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Abstract

Energy efficiency is an important consideration for servers, bringing

about a need for benchmarks to fairly measure energy efficiency. These

benchmarks must be relevant, reproducible, fair, verifiable, and easy to

use. This paper describes these characteristics in detail and provides an

assessment of existing energy efficiency benchmarks based on these cri-

teria. Next it describes Chauffeur, a new framework developed to help

benchmarks achieve these goals with relatively little effort. SPEC’s Server

Efficiency Rating Tool (SERT) builds upon the Chauffeur framework to

deliver more meaningful energy efficiency data than is provided by the cur-

rent generation of benchmarks and workloads. Experimental SERT data

is used to highlight some of the features of Chauffeur and characteristics

of SERT.

1 Introduction

Energy consumption of data centers has become an important issue for many

companies, resulting in increased focus on the energy efficiency of servers [1].
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There are many challenges in evaluating the energy efficiency of computer

servers. Some traditional performance-oriented benchmarks have been updated

to include energy efficiency metrics; while these have some value, the results

of these measurements are not indicative of energy consumption under real-

world conditions. Early benchmarks like SPECpower ssj2008 that were designed

specifically for measuring energy efficiency have their own limitations.

I have made the following contributions in the context of energy efficiency

measurements for servers: 1) a detailed set of criteria that can be used to

assess the quality of computer benchmarks, and energy efficiency benchmarks in

particular, 2) development of the Chauffeur framework for creating high-quality

energy efficiency benchmarks.

This paper begins by describing the need for new energy efficiency bench-

marks. Next it outlines the design criteria that must be considered when de-

veloping energy efficiency benchmarks, and evaluates how current benchmarks

fare against these criteria. Then it introduces Chauffeur, a framework designed

to support the implementation of workloads that overcome the limitations of

these existing benchmarks, and the Server Efficiency Rating Tool (SERT) im-

plemented by the Standard Performance Evaluation Corporation (SPEC) which

builds on this framework. Finally, SERT results are used to demonstrate how

Chauffeur and SERT meet its design goals to produce a more complete measure

of server energy efficiency.

2 The Need for Energy Efficiency Benchmarks

Computer performance benchmarks have been widely used in both industry and

academia for decades. In recent years, energy efficiency metrics have been added

to existing performance benchmarks, and new benchmarks have been created

specifically to measure energy efficiency. This section explores the reasons why
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energy efficiency benchmarks are important, and why additional measures of

energy efficiency are still needed.

2.1 Significance of Energy Efficiency

In the past, the acquisition cost of a server was the most significant component

of its total cost of ownership. Over time, maintenance and operational costs

have become more significant, and in recent years power and cooling costs have

grown to be a critical factor in the equation, in some cases dominating the cost

of the server itself [2].

Government agencies such as the United States Environmental Protection

Agency (US EPA) have taken note of these trends and taken a more active role

in establishing criteria for energy efficient servers. The US EPA has established

an ENERGY STAR program for servers with basic requirements, and a future

version of this program is expected to introduce more comprehensive criteria

including measurements of active mode efficiency [3, 4]. Other governments

are also in the process of developing similar programs. It is likely that in the

future, both government and commercial entities will include ENERGY STAR

or similar qualifications as part of their procurement processes.

System vendors have also noticed this trend and given increased focus to

energy consumption as a criteria in the design of systems and their components.

While this generally hasn’t resulted in a decrease in peak power consumption

of typical servers [5], it has slowed the pace of growth, resulting in improved

efficiency. Hardware and operating system vendors have also improved power

management technologies to the point where they can be enabled by default

without impacting the perceived performance of the system [6].
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2.2 Low Utilization Servers

Servers are typically sized to handle peak loads, but spend much of their time

running at significantly lower utilizations [7, 8]. Even when operating at “peak”

capacity, some resources may not be at full utilization. External storage can

also consume significant amounts of power, sometimes exceeding the server’s

power consumption. Even if a server is at full capacity, the storage it is using

may not be [9].

Different applications may have significantly different patterns of utilization.

Servers used for corporate email may be heavily utilized during the daytime,

moderately utilized during the evening, and have low utilization overnight. Web

servers used primarily for entertainment may have their heaviest usage in the

evening hours, with moderate utilization during the day and lower overnight.

Servers used for payroll processing may be used almost exclusively during the

evening and overnight hours during certain days of the month and virtually

unused at other times.

Server consolidation and virtualization are commonly used to increase uti-

lization of servers and reduce the amount of idle capacity, under the assump-

tion that the peak times for one workload match the low utilization periods

for another workload. However, some workloads are not good candidates for

virtualization, and even a fully virtualized environment typically needs spare

capacity to handle peak loads [10].

As a result, a typical server is operating at less than full capacity most of

the time, and often far less. Power management technology can be used to take

advantage of these periods to reduce power consumption when the full resources

of the server are not needed. Common techniques include dynamic voltage and

frequency scaling (DVFS) and putting idle processors in a low power sleep state

until they are needed [8].
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2.3 Estimating Power Consumption

Benchmarks are a tool for providing information and comparing alternatives,

but customers aren’t primarily interested in a system’s benchmark results; in-

stead, they want to understand how the system will behave in their own envi-

ronment. In this sense, the benchmark is a proxy for the customer’s application.

The accuracy of an energy efficiency assessment based on a benchmark result

depends on how closely the benchmark environment matches the actual appli-

cation environment.

Detailed descriptions of the hardware, software, and tuning used in a bench-

mark result are critical for assessing whether a particular benchmark test system

matches the environment of interest to the customer.

In many cases, a benchmark publication will not be available for the exact

system configuration the customer is interested in. Most benchmarks stress a

particular component of the system. In many cases this is the CPU, and minimal

disk is required; a counter-example is TPC-C which uses far more disks than are

required for typical server applications. Since vendors will optimize their hard-

ware configuration to match the requirements of the benchmark, the resulting

system configuration is often not typical of production servers. For performance

benchmarks, this isn’t generally a big issue – for example, a company might base

their purchasing decision in part on SPECcpu results, but understand that their

application will require more disks; these additional disks would not be expected

to hurt the performance of the CPUs. With energy efficiency, every component

of the system may contribute to the power consumption. This makes it difficult

to estimate the impact of additional components on the energy efficiency of the

system. Server vendors such as IBM1 and HP2 have provided tools to estimate

1http://www-947.ibm.com/systems/support/tools/estimator/energy/index.html
2http://h18004.www1.hp.com/products/solutions/power/advisor-online/

HPPowerAdvisor.html
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power requirements for specific configurations.

Using a suite of multiple workloads rather than a single application can make

the results more representative of a variety of application types, and therefore

relevant to a wider spectrum of customers. Requiring common tuning to be

used for multiple applications also helps to limit “super-tuning” that may make

the results less meaningful for real servers.

2.4 Inadequacy of Performance Benchmarks

Traditional performance-oriented benchmarks are ill-suited to measuring en-

ergy efficiency. While there is some value in measuring and reporting power

consumption data for a performance benchmark, this will, at best, produce a

measure of the energy efficiency at peak utilization. Such a value would provide

little information about the efficiency at lower utilizations.

Additionally measuring the power at “Active Idle” (where a server is ready

to accept work but no work is actually in progress) is an improvement, because

these two values provide upper and lower bounds on the power consumption

of the system. However, this still does not provide information about how the

power consumption changes between these two points. A linear extrapolation

between the two points used to provide a reasonably good model of the power

consumption of a server [11], but in recent years the power curve has become

nonlinear for many servers [6, 12, 13].

Attempts to retroactively calculate energy efficiency metrics for published

benchmark results can be particularly problematic. When measured power data

is not available, the power consumption must be estimated. This is typically

done using the nameplate power rating of the system (or some subset of its

components) along with some assumptions. However, the nameplate power

rating for a server is a conservative maximum value intended for safely powering
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the system. Under real conditions, the system is unlikely to draw this much

power even at peak load. The nameplate rating often overstates the actual

peak requirements by a factor of two or more [11, 14]. Basing energy efficiency

estimates on these nameplate values could significantly skew the results.

Despite these limitations, estimated power measurements can be used to

draw historical trends where measured data is not available. Rivoire, Shah,

Ranganathan, and Kozyrakis estimate energy efficiency of winners of the sort

benchmarks for the ten years prior to their introduction of JouleSort [15]. Poess

and Nambiar analyze the trends of estimated power consumption of past TPC-

C results [4]. In this case, the accuracy of the data may be improved by the

fact that TPC-C includes a price/performance metric, leading results to use

carefully balanced systems to avoid any extra components that would increase

cost without improving performance.

Another challenge is that performance benchmarks are highly tuned envi-

ronments; vendors use a variety of tuning options to improve their results. In

some cases these tuning options may increase power consumption disproportion-

ately with the performance gain. If energy efficiency is not a standard metric,

the submitter of the result will not have to balance performance with energy

efficiency, and will likely tune their system for maximum performance at the ex-

pense of efficiency. This may not be a realistic measure of the energy efficiency

a customer would experience with their own application.

This is also an argument against making power measurements an optional

component of the benchmark. This will tend to result in results that have power

data being tuned for energy efficiency, while results that do not include power

data are tuned for performance, with no meaningful way to compare between the

two. Furthermore, this division may scare vendors away from publishing energy

data since they may compare unfavorably with performance-tuned results. This
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Figure 1: SPECpower ssj2008 scores by Test Date, including all single-node
results published at http://www.spec.org/power ssj2008/results as of November
19, 2013

topic will be explored further in section 6.2.

2.5 Energy Efficiency Benchmarks Show Improvements

The current set of energy efficiency benchmarks (described in more detail in

section 4) already demonstrate significant improvements in the energy efficiency

of servers. While it is difficult to prove causation, it is likely that some portion

of these improvements are due to the existence of these benchmarks, which force

vendors to improve energy efficiency in order to keep up with their competitors.

SPECpower ssj2008 has the greatest number of published results, with 461

results published as of November 19, 2013. This large body of data allows us

to visualize trends in efficiency over time. Figure 1 shows all of the published

single-node SPECpower ssj2008 results by test date, showing an improvement of

more than 12 times between the most efficient result published in 2007 compared

to the most efficient result published in 2013.
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The graph of results tends to plateau at certain points, leading some to

conclude that efficiency has reached its peak [16]. In reality, jumps in the results

tend to occur with new processor releases, followed by periods of relatively

little improvement as vendors make incremental improvements to their power

management and tuning. For example, the jump in early 2009 was due to

results using the Intel Xeon X5570 processor, the improvement in early 2010

corresponds with the introduction of the Intel Xeon X5670, and the increase at

the beginning of 2012 came with the Intel Xeon E5-2660.

Figure 2(a) shows the average watts at the 100% load level by test date for

single-node SPECpower ssj2008 results. While there has been some reduction

in the power consumption over time, the overall trend has been fairly flat –

thus, newer servers generally don’t consume less power than their predecessors

at peak utilization, but they deliver improved performance without increasing

power consumption.

The trend for power consumption at active idle, shown in Figure 2(b) shows

that idle power has declined over time, indicating that power management tech-

nologies have improved to better reduce power consumption when a server isn’t

busy. This is further illustrated in Figure 3 which shows the idle-to-peak power

ratio (IPR) for these results [12, 13]. The IPR values are trending downward

over time, indicating a greater reduction in power from peak to idle in recent

results.

2.6 Current Efficiency Benchmarks Have Shortcomings

While current energy efficiency workloads have been successful in demonstrat-

ing the relative efficiency of servers (and perhaps at driving improvements in

efficiency), there is still ample need for further energy efficiency benchmarks.

Specific limitations of existing energy efficiency benchmarks will be discussed in
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Figure 2: SPECpower ssj2008 Average watts at the 100% load level and
active idle by test date, including all single-node results published at
http://www.spec.org/power ssj2008/results as of November 19, 2013
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Figure 3: SPECpower ssj2008 Idle-to-Peak Power Ratio (IPR)
by Test Date, including all single-node results published at
http://www.spec.org/power ssj2008/results as of November 19, 2013

Section 4. This section addresses more general areas where additional bench-

marks are needed.

2.6.1 Broader Measures of Efficiency

Different benchmarks suit different purposes. Fanara, Haines, and Howard cat-

egorize benchmarks into three levels of approximation: 1) a Generalized Bench-

mark gives a broad measure of a system’s performance and efficiency character-

istics, 2) an Application Proxy Benchmark provides more accurate data for a

specific application type, and 3) Real Application Data uses the intended appli-

cation directly to assess a system according to its planned usage. Each of these

levels provides additional accuracy at the expense of generality [3].

Most current energy efficiency benchmarks fall into the second category.

They provide efficiency data for a particular type of workload, but do not give

a good general picture of the broader efficiency of the server across multiple
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workloads with different characteristics.

2.6.2 Representative Application-specific Benchmarks

In addition to broad measures of efficiency, there is a need for more represen-

tative application-specific benchmarks. Most of the existing benchmarks focus

on specific hardware components (such as processors) without exercising a bal-

anced system. Real servers tend to require some mixture of CPU, memory,

storage, and network capabilities, often along with requirements for redundant

components or other reliability features. Benchmarks that do not exercise these

features will tend to penalize these real systems. No single benchmark can ad-

dress the full variety of workloads that customers will run on these systems;

a broader set of benchmarks allows customers to focus on the results that are

most meaningful for their applications.

2.6.3 Dynamic Environments

Current benchmarks that measure power consumption at multiple utilizations

do so in a controlled, orderly fashion. For example, SPECpower ssj2008 runs

at 100% of a server’s capacity, then 90%, then 80% and so forth until it reaches

active idle; at each load level it runs for 30 seconds to allow the system to

reach steady state before measuring power and performance for 240 seconds.

This methodology allows for accurate and repeatable measurements, but it is

not particularly representative of many real-world environments, which tend to

have more dynamic changes in utilization. Such environments require power

management to act more aggressively to reduce power consumption when pos-

sible and allow the server to operate at full performance when necessary.

More generally, a benchmark intended to measure the efficacy of power man-

agement technologies should establish quality of service (QoS) constraints to en-

sure that transactions are processed in a timely manner at whatever utilization

12



the server is running at. People expect that the server will execute transactions

at least as quickly when the server is at a low utilization as when it is heav-

ily utilized. If power management is too aggressive at reducing energy at low

utilizations (e.g. putting the processor into a deep sleep state), it may be slow

to “wake up” again when work enters the system. In particular, benchmarks

that measure “Active Idle” should measure the response time of the first trans-

actions to be processed after the Active Idle period has ended to ensure that

these transactions are still processed in a reasonable amount of time.

2.6.4 Energy Efficiency of Virtualized Systems

Virtualization has become a popular way of managing server applications. There

are many advantages to running applications in virtual machines, including the

ability to consolidate applications on a smaller number of servers that can then

run at a higher utilization. These environments have characteristics that are dis-

tinct from physical servers, and energy efficiency must be measured differently.

For this reason, while SPECpower ssj2008 is technically capable of running in

these environments, run rules explicitly prohibit this for compliant runs.

When virtualization is used to balance a single workload across multiple

virtual servers (possibly running on multiple physical servers), the infrastructure

will typically scale up to meet demand by provisioning additional virtual servers,

then scale back during periods of low utilization by shutting down some of these

servers. This is a much different model than scaling for physical servers, where

the utilization on that server will change with the application load. An energy

efficiency benchmark for this type of virtualized environment would need to

scale in a similar manner in order to produce an accurate measurement. Such

a benchmark would demonstrate the ability of the virtualization infrastructure

to make intelligent decisions about when to add or remove virtual servers and

what physical servers new virtual machines should be deployed to.
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In other cases, virtualization is used to deploy multiple heterogeneous appli-

cations to one or more physical servers. In this case, the different applications

may each scale differently. Often, it is expected that periods of high utiliza-

tion for one application may coincide with periods of low utilization for another

application. In this type of environment, one of the goals of the virtualization

infrastructure is to intelligently shift server resources among virtual machines

to optimize performance according to the load for each virtual machine. An

energy efficiency benchmark for this type of environment would be seeking to

demonstrate the ability of the infrastructure to do this while maximizing energy

efficiency.

3 Design Criteria for Energy Efficiency Bench-

marks

Benchmark designers have to balance several, often conflicting, criteria in order

to be successful. Different benchmarks balance these criteria differently, result-

ing in disparate strengths and weaknesses. Since no single benchmark can be

strong in all of these areas, there will always be a need for multiple benchmarks

[17]. But just because a benchmark is new doesn’t mean that it is better than

existing benchmarks [18]. It is important to understand the characteristics of a

benchmark and determine whether or not it is applicable for a particular situ-

ation. When developing a new benchmark, the goals of the benchmark should

be defined so that choices between competing design criteria can be made in

accordance with those goals to achieve the desired balance.

Several researchers and industry participants have listed various desirable

characteristics of benchmarks [17, 18, 19, 20, 21, 22, 23]. The contents of the

lists vary based on the perspective of the author and their choice of terminology

14



and grouping of characteristics, but most of the concepts are similar. The key

characteristics can be organized in the following groups, which will be discussed

in more detail in the next sections:

Relevance How closely the benchmark behavior correlates to behaviors that

are of interest to consumers of the results

Reproducibility The ability to consistently produce similar results when the

benchmark is run with the same test configuration

Fairness Allowing different test configurations to compete on their merits with-

out artificial limitations

Verifiability Providing confidence that a benchmark result is accurate

Usability Avoiding roadblocks for users to run the benchmark in their test

environments

Energy efficiency benchmarks are subject to these same criteria, but each

category includes additional issues that are specific to measuring energy effi-

ciency.

Existing literature regarding the design of benchmark applications is lacking,

so the material in this section covers the criteria both for benchmarks in general

as well as characteristics specific to energy efficiency benchmarks.

3.1 Relevance

“Relevance” is perhaps the most important characteristic of a benchmark. Even

if the workload was perfect in every other regard, it will be of minimal use if

it doesn’t provide relevant information to its consumers. Yet relevance is as

much a characteristic of the use of a benchmark as it is of the benchmark

itself; benchmarks may be highly relevant for some scenarios and of minimal
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relevance for others. For the consumer of benchmark results, an assessment of

a benchmark’s relevance must be made in context of the planned use of those

results. For the benchmark designer, relevance means determining the intended

use of the benchmark and then designing the benchmark to be relevant for those

areas [24].

A general assessment of the relevance of a benchmark or workload involves

two dimensions: the breadth of its applicability, and the degree to which the

workload is relevant in that area. For example, an XML parsing benchmark

may be highly relevant as a measure of XML parsing performance, somewhat

relevant as a measure of enterprise server application performance, and not at

all relevant for graphics performance of 3D games. Conversely, a suite of CPU

benchmarks such as SPEC CPU2006 may be moderately relevant for a wide

range of computing environments. The behavior illustrated in these examples is

generally true: benchmarks that are designed to be highly relevant in a specific

area tend to have narrow applicability, while benchmarks that attempt to be

applicable to a broader spectrum of uses tend to be less meaningful for any

particular scenario [18].

Scalability is an important aspect of relevance, particularly for server bench-

marks. The most relevant benchmarks will be multi-process and/or multi-

threaded in order to be able to take advantage of the full resources of the server

[17]. Achieving scalability in any application is difficult; for a benchmark, the

challenges are often even greater because the benchmark is expected to run

on a wide variety of systems with significant differences in available resources.

The benchmark designer must also strike a careful balance between avoiding

artificial limits to scaling and behaving like real applications (which often have

scalability issues of their own).

Energy efficiency benchmarks carry the same set of requirements for rele-
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vancy, but also include new challenges. Since most servers run at low utilizations

much of the time [11, 24, 25], energy usage should be measured at different load

levels. For many modern servers, energy consumption at low utilizations can

be significantly lower than at peak utilization. The amount of savings at lower

utilizations can vary depending on the hardware, operating system, and tuning

used.

This is illustrated in the SPECpower ssj2008 results shown in Figure 4. The

result shown in Figure 4(a) achieved 1,426,130 ssj ops and 247W @100% target

load, and 56.6W at Active Idle. The result in Figure 4(b) had very similar

numbers: 1,432,623 ssj ops and 245W @100% target load, and 55.2W at Ac-

tive Idle. Yet the first result had a SPECpower ssj2008 metric of 4,708 over-

all ssj ops/watt, while the second result was over 13% higher at 5,347 overall

ssj ops/watt. The difference between these results is that the second system was

able to reduce power more dramatically at intermediate load levels, achieving

peak efficiency at the 70% target load. For a server that spends much of its time

running at low utilizations, the practical difference between these two systems

could be significant.3

Run rules for energy efficiency benchmarks need to place limits on envi-

ronmental factors (such as ambient temperature) to ensure that the results are

obtained in realistic environments and will be applicable to real systems. Energy

efficiency benchmarks also need to define which components of a system need to

be included in power measurements. For example, SPECpower ssj2008 does not

require a video monitor to be included in power measurements for servers, but

does require a video monitor to be included for systems classified as “personal

3Results obtained from http://www.spec.org/power_ssj2008/results/res2012q1/

power_ssj2008-20120305-00428.html and http://www.spec.org/power_ssj2008/results/

res2012q4/power_ssj2008-20120918-00544.html on 28 March 2013. SPECR© and
the benchmark name SPECpower ssjR© are registered trademarks of the Standard
Performance Evaluation Corporation. For more information about SPECpower, see
http://www.spec.org/power_ssj2008/.
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Figure 4: Sample SPECpower ssj2008 Results

systems”. These distinctions are less important for traditional performance

benchmarks since these components don’t contribute to the performance of the

system. For some benchmarks it is appropriate to measure power separately for

certain sub-components of the system under test; for example, SPECvirt sc2010

allows power to be measured either for the server only or for both server and

external storage devices.

Energy efficiency benchmarks benefit from support for runs on multiple sys-

tems. Many performance benchmarks are limited to running on a single system,

while others support or require multiple systems for different tiers of the applica-

tion, such as an application server and a database running on different physical

systems. Some benchmarks also allow the benchmark to run across clusters of

systems, but this can make it trivial to expand the cluster to get a higher result,

turning the benchmark into a contest of which vendor is willing to spend the

most money on their test configuration.

In energy efficiency benchmarks, however, support for multi-system config-

urations allows the benchmark to support systems such as blades that share

power and cooling infrastructure. In these environments, it can be inaccurate
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or impractical to measure energy usage for a single system in isolation, but

power consumption can be measured for a group of systems.

One way to increase the breadth of relevance is to support user-configurable

parameters that change the behavior of the benchmark. This allows the work-

load to represent a larger class of applications than a single benchmark could

otherwise achieve [17]. This typically isn’t appropriate for industry standard

benchmarks (where it is important that published results are comparable) but

is useful for research-oriented workloads where settings can be chosen in order

to perform some experiment. Even some industry standard benchmarks, like

SPECpower ssj2008, include user-configurable parameters that may be used for

non-compliant runs.

3.2 Reproducibility

Reproducibility is the capability of the benchmark to produce the same results

consistently for a particular test environment. It includes both run-to-run con-

sistency and the ability for another tester to independently reproduce the results

on another system.

Ideally, a benchmark result is a function of the hardware and software con-

figuration, so that the benchmark is a measure of the performance of that envi-

ronment; if this were the case, the benchmark would have perfect consistency.

In reality, the complexity inherent in a modern computer system introduces

significant variability in the performance of an application. This variability is

introduced by several factors, including things such as the timing of thread

scheduling, dynamic compilation, physical disk layout, network contention, and

user interaction with the system during the run[18, 26]. Energy efficiency bench-

marks often have additional sources of variability due to power management

technologies dynamically making changes to system performance and tempera-
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ture changes affecting power consumption.

Benchmarks can address this run-to-run variability by running for long

enough periods of time to include representative samples of these variable be-

haviors. Some benchmarks require submission of multiple runs with scores that

are near each other as evidence of consistency. Benchmarks also tend to run at

steady state, unlike more typical applications which have variations in load due

to factors such as the usage patterns of users.

The ability to reproduce results in another test environment is largely tied to

the ability to build an equivalent environment. Industry standard benchmarks

require results submissions to include a description of the test environment, typ-

ically including both hardware and software components as well as configuration

options. Similarly, published research that includes benchmark results gener-

ally includes a description of the test environment that produced those results.

However, in both of these cases, the description may not provide enough detail

for an independent tester to be able to assemble an equivalent environment.

Hardware must be described in sufficient detail for another person to obtain

identical hardware. Software versions must be stated so that it is possible to

use the same versions when reproducing the result. Tuning and configuration

options must be documented for firmware, operating system, and application

software so that the same options can be used when re-running the test. Un-

fortunately, much of this information cannot be automatically obtained in a

reliable way, so it is largely up to the tester to provide complete and accurate

details. TPC benchmarks require a certified auditor to audit results and ensure

compliance with reporting requirements. SPEC uses a combination of automatic

validation and committee review to establish compliance.

Complete descriptions of the system configuration are especially important

for energy efficiency benchmarks. Systems may include components that have
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little or no impact on performance but may consume energy. For example, the

performance results of a CPU-focused benchmark may not be dependent on

what video card is installed in the system, so the system description for such a

benchmark might not include that detail. But if the same benchmark includes

an energy metric, the choice of video card could be important since different

cards may require different amounts of power; therefore, it may be necessary to

disclose the video card in the system configuration details.

Even with a complete and accurate description of the system configuration,

results may not be completely reproducible due to variations in power consump-

tion of different physical parts [27, 28, 29].

Environmental constraints and other run rules can also improve reproducibil-

ity by putting limits on the test configuration. For example, the SPEC Power

and Performance Methodology recommends a requirement that the minimum

ambient temperature is no less than 20 degrees Celsius. Most data centers are

kept at or above this range, so this allows results to be reproduced without

introducing special cooling requirements.

Not all power analyzers are equivalent, and some may not be able to measure

results with sufficient accuracy for a particular benchmark. The SPEC Power

and Performance Methodology describes several requirements that analyzers

must meet in order to produce acceptable results; SPEC has an acceptance

process for verifying that analyzers meet these requirements and can therefore

be used for benchmarks such as SPECpower ssj2008.

A related issue is the calibration of power analyzers. These devices need to

be calibrated periodically to ensure their continued accuracy. The SPEC Power

and Performance methodology recommends that benchmarks require power an-

alyzers to have been calibrated within the past year.
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3.3 Fairness

Fairness ensures that systems can compete on their merits without artificial

constraints. Because benchmarks always have some degree of artificiality, it is

often necessary to place some constraints on test environments in order to avoid

unrealistic configurations that take advantage of the simplistic nature of the

benchmark.

Benchmark development requires compromises among multiple design goals;

benchmarks developed by a consensus of experts is generally perceived as being

more fair than a benchmark designed by a single company [20]. While “design

by committee” may not be the most efficient way to develop an application, it

does require that compromises are made in such a way that multiple interested

parties are able to agree that the final benchmark is fair. As a result, benchmarks

produced by organizations such as SPEC and the TPC (both of which are

comprised by members from companies in the industry as well as academic

institutions and other interested parties) are generally regarded as fair measures

of performance.

Benchmarks require a variety of hardware and software components to pro-

vide an environment suitable for running the benchmark. It is often necessary

to place restrictions on what components may be used. Careful attention must

be placed on these restrictions to ensure that the benchmark remains fair.

Some restrictions must be made for technical reasons. For example, a bench-

mark implemented in Java requires a Java Virtual Machine (JVM) and an oper-

ating system and hardware that supports it. A benchmark that performs heavy

disk IO may effectively require a certain number of disks to achieve acceptable

IO rates, which would therefore limit the benchmark to hardware capable of

supporting that number of disks.

Benchmark run rules often require hardware and software to meet some
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level of support or availability. While this restricts what components may be

used, it is actually intended to promote fairness. Because benchmarks are by

nature simplified applications, it is often possible to use simplified software

to run them; this software may be quite fast because it lacks features that

may be required by real applications. For example, enterprise servers typically

require certain security features in their software which may not be directly

excercised by benchmark applications; software that omitted these features may

run faster than software that includes them, but this simplified software may

not be usable for the customer base that the benchmark is targeted to. Rules

regarding software support can be a particular challenge when using open source

software, which is often supported primarily by the developer community rather

than commercial support mechanisms.

Both of these situations require a careful balance. Placing too many or

inappropriate limits on the configuration may disallow results that are relevant

to some legitimate situations. Placing too few restrictions can pollute the pool

of published results and, in some cases, reduce the number of relevant results

because vendors can’t compete with the “inappropriate” submissions.

Portability is an important aspect of fairness. Some benchmarks, such as

TPC-C, only provide a specification and not an implementation of the bench-

mark, allowing vendors to implement the specification using whatever technolo-

gies are appropriate for their environment (as long as the implementation is

compliant with the specification and other run rules). Other benchmarks, such

as those from SPEC, provide an implementation that must be used. Achiev-

ing portability with benchmarks written in Java is relatively simple; for C and

C++, it can be more difficult [23].

If the benchmark allows code to be recompiled, rules must be defined to

state what compilation flags are allowed. SPEC CPU2006 defines Base results
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(with minimal allowed compilation flags) and Peak results (allowing the tester

to use whatever compilation flags they would like). Similarly, Java benchmarks

may put limits on what JVM command-line options may be used.

In some cases multiple implementations may be required to support different

technologies. In this case, it may be necessary (as with SPECweb2009) for

results with different implementations to be assigned to different categories so

they cannot be compared with each other.

Benchmark run rules often include stipulations on how results may be used.

These requirements are intended to promote fairness when results are published

and compared, and often include provisions that certain basic information is

included with every submission. For example, SPECpower ssj2008 requires that

if a comparison is made for the power consumption of two systems at the 50%

target load level, the performance of each system at the 50% load level as well

as the overall ssj ops/watt value must also be stated.

SPEC has perhaps the most comprehensive fair use policy which further

illustrates the types of fair use issues that benchmarks should consider when

creating their run rules [30].

Energy efficiency benchmarks have fairness concerns similar to other bench-

marks. Once again, having environmental constraints (such as a minimum tem-

perature threshold) can help ensure that different results are comparable.

Optional energy efficiency metrics can create new challenges for fairness.

When performance results are published without regard for energy efficiency,

the environment is likely to be tuned for optimal performance even at the ex-

pense of a large increase in energy consumption. Results that include energy

efficiency metrics are likely to take a more balanced approach, either optimizing

for energy efficiency or making improvements to performance only when there

isn’t a disproportionate increase in energy consumption. Comparisons between
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results that have energy efficiency metrics and those that don’t may not be ac-

curate. Benchmarks that include optional energy efficiency metrics may need

to prohibit or limit these comparisons.

3.4 Verifiability

Within the industry, benchmarks are typically run by vendors who have a vested

interest in the results. In academia, results are subjected to peer review and

interesting results will be repeated and built upon by other researchers. In both

cases, it is important that benchmark results are verifiable so that the results

can be deemed trustworthy.

Good benchmarks perform some amount of self-validation to ensure that

the workload is running as expected, and that run rules are being followed.

For example, a workload might include configuration options intended to allow

researchers to change the behavior of the workload, but standard benchmarks

typically limit these options to some set of compliant values which can be veri-

fied at runtime. Benchmarks may also perform some functional verification that

the output of the test is correct; these tests could detect some cases where opti-

mizations (e.g. experimental compiler options) are producing incorrect results.

Verifiability is simplified when configuration options are under the control

of the benchmark, or when these details can be read by the benchmark. In this

case, the benchmark knows the configuration and the details can be included

with the results. Configuration details that must be documented by the user

are less trustworthy since they could have been entered incorrectly (whether by

accident or intentionally).

One way to improve verifiability is to include more details in the results than

are strictly necessary to produce the benchmark’s metrics. Inconsistencies in

this data could raise questions about the validity of the data. For example, a
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benchmark with a throughput metric might include response time information

in addition to the transaction counts and elapsed time.

SPEC PTDaemon includes several features designed to improve verifiability

of power measurements. A checksum is used to ensure that only official SPEC

PTDaemon binaries are used. PTDaemon sets current and voltage ranges itself

(when allowed by the device) so that it knows what ranges are in use. Data

is collected for voltage, current, and power factor in addition to power. For

each measurement interval it reports the minimum and maximum readings in

addition to the average.

The SPEC Power and Performance Benchmark Methodology recommends

measuring the uncertainty of the energy measurements, which are a function

of the analyzer being used, the range settings on the analyzer, and the ac-

tual measurements. Power analyzers typically have to be set to some current

range; if this range is not appropriate for the actual current being measured,

the measurements reported by the analyzer may be inaccurate. The technical

specifications for each power analyzer typically include accuracy formulas based

on the range setting, measured values, and other factors; these can be used to

ensure that the measurements do not exceed the uncertainty required by the

benchmark. SPEC PTDaemon includes support for automatically calculating

the uncertainty of the results.

SPEC also recommends using a temperature sensor to verify that the ambi-

ent temperature doesn’t fall below the limit specified by the benchmark [24].

3.5 Usability

Most users of benchmarks are technically sophisticated, making ease of use less

of a concern than it is for more consumer-focused applications. There are,

however, several reasons why ease of use is important.
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One of the most important ease of use features for a benchmark is self-

validation. This was already discussed in terms of making the benchark verifi-

able. Self-validating workloads give the tester confidence that the workload is

running properly.

Another aspect of ease of use is being able to build practical configurations

for running the benchmark. For example, the current top TPC-C result has

a system under test with over 100 distinct servers, over 700 disk drives and

11,000 SSD flash modules (with a total capacity of 1.76 petabytes), and a system

cost of over $30 million USD. Of the 18 non-historical accepted TPC-C results

published between January 1, 2010 and August 24, 2013, the median total

system cost was $776,627 USD. These configurations aren’t economical for most

potential users [18].

Accurate descriptions of the system hardware and software configuration are

critical for reproducibility, but can be a challenge for usability due to the com-

plexity of these descriptions. Benchmarks can improve ease of use by providing

tools to assist with this process.

Energy efficiency benchmarks carry special ease of use challenges. The users

of these benchmarks tend to be a cross-section of performance specialists and

energy specialists. These groups have different skill sets, resulting in a more

diverse set of users than a typical performance benchmark; therefore, fewer

assumptions can be made about the user’s understanding of running the bench-

mark.

In an energy efficiency benchmark, the energy usage of the system must be

measured. Some systems may provide energy usage data from internal sources,

but benchmarks typically require an external power analyzer that meets certain

criteria for accuracy. Properly installing and configuring this device can be a

challenge even for experienced users. For example, the team publishing the
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first TPC-Energy result relates an experience with overheating of power cables

during some of their initial experiments due to exceeding the rating of those

cables[31]. These types of issues can’t be dealt with directly by benchmark

code, but documentation for energy efficiency benchmarks should caution users

to carefully plan their environments to avoid safety problems or inaccuracy in

results.

Benchmarks can simplify collection of energy data by collecting data directly

from the power analyzer and performing automatic validation that the results

meet the accuracy requirements specified by the benchmark. SPEC has im-

plemented the SPEC PTDaemon for automatically collecting data from power

analyzers and temperature sensors; this tool has also been licensed to other

groups for inclusion in their benchmarks.

3.6 Key Requirements for Energy Efficiency Benchmarks

While many of the design criteria for energy efficiency benchmarks are the same

as the criteria for traditional performance benchmarks, the sections above iden-

tify several requirements that are either specific to energy efficiency benchmarks

or have increased importance:

Multiple Load Levels Since servers rarely run at 100% utilization, it is im-

portant for energy efficiency benchmarks to measure power consumption

at multiple levels of system utilization.

Multiple Workloads Different workloads use system resources differently, and

no single workload can model energy efficiency for all types of applications.

Suites of multiple workloads can exercise a wider range of behavior to pro-

duce more accurate results.

Multi-system Results Many servers, particularly blades, use shared power

and cooling infrastructure that can make it difficult or impossible to ac-
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curately measure energy efficiency of a single system in isolation. Bench-

marks that are able to exercise multiple systems in a coordinated fashion

can produce meaningful results for these environments.

Accurate Power Measurements Energy efficiency benchmarks need to de-

fine power analyzer accuracy requirements, and should verify that these

requirements are met. Requirements on environmental factors, such as

ambient temperature, may be necessary to ensure results are relevant for

real usage.

Full Disclosure System components and settings that have no impact on per-

formance may change the system’s power consumption. Energy efficiency

benchmarks may require more complete descriptions of the system than

are needed for many performance benchmarks.

Ease of Use Accurately measuring power consumption can be challenging;

benchmarks that are easy to use and perform automatic validation will

reduce the burden on users and result in more accurate results.

4 Existing Energy Efficiency Benchmarks

Several different benchmarks and workloads have been proposed for evaluating

energy efficiency of computer servers [32, 33]. In some cases, power measure-

ments have been added to existing performance benchmarks as optional or re-

quired metrics. In other cases, benchmarks have been designed specifically for

measuring energy efficiency.

In this section I discuss several benchmarks that include power metrics and

assess their quality against the design criteria discussed in the previous section.
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4.1 TPC-Energy

The Transaction Processing Council (TPC)4 has been producing database and

transaction processing benchmarks for over 20 years. There are currently three

active TPC benchmarks: TPC-C, TPC-E, and TPC-H. In 2010, the TPC re-

leased the TPC-Energy specification which defines how energy usage can be

measured and reported for any TPC benchmark result [34]. Energy metrics

for TPC benchmark results are optional, but when reported they must be in

compliance with the TPC-Energy specification.

TPC-Energy results include a “watts per performance” value; lower val-

ues indicate less energy usage than higher values. In addition to the overall

energy efficiency metric, energy requirements can be reported for independent

subsystems such as the Database Server or the Storage Subsystem. Energy

consumption can be measured on a subset of system components when multi-

ple components are considered to be equivalent; the energy consumption of the

measured components is extrapolated to estimate the total energy consumption

of the system.

TPC-C is an On-Line Transaction Processing (OLTP) benchmark first in-

troduced in 1992 by the TPC. It has a database containing nine tables and uses

a mix of five transactions commonly found in order-entry systems (New Order,

Payment, Delivery, Order Status, and Stock Level)[35]. As of August 24, 2013

there have been only 3 TPC-C results published with energy measurements, all

by a single vendor.

TPC-E is another OLTP benchmark, released in 2007. It is intended to be

more representative of modern OLTP applications than the TPC-C benchmark.

In particular, it was designed to use more complex transactions with a significant

reduction in I/O requirements. The workload models a brokerage firm, with 33

4http://www.tpc.org/
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database tables and 10 transaction types. The database uses a more realistic

set of data types, content, and constraints than TPC-C [35]. As of August 24,

2013, there have been 7 TPC-E results published with energy measurements.

TPC-H is a decision support benchmark exercising ad-hoc queries, released

in 1999. It includes 22 queries with diverse characteristics, and the metric

captures both single-user and multi-user results [36]. As of August 24, 2013

there are 6 published TPC-H results that include energy measurements.

Relevance The TPC-Energy specification provides relevant measurements of

the energy consumption of the environment used to run the benchmark, but the

relevance of the resulting data is a function of the relevance of the benchmark it-

self. It optionally includes separate measurements of different components of the

environment (database server, application server, storage, and miscellaneous),

which can provide additional information that is relevant to customers. The re-

sulting energy efficiency metric is a “watts per transaction” ratio, where smaller

values indicate better efficiency. Observers often find it easier to understand a

“bigger is better” metric, but the TPC-Energy metric is consistent with the

existing TPC pricing metrics, where the goal is to have maximum performance

with minimum cost per transaction – similarly, the goal for energy is to have

the maximum performance with the least energy per transaction.

At the time of its release, TPC-C was representative of applications common

at that time, and was therefore highly relevant. In the past 20 years, technology

and applications have changed; while TPC-C has undergone some revisions,

it is largely the same application that it was at its initial release. Modern

applications typically have more complex data models and queries, as well as

more substantial business logic. TPC-C exercises many components of a system,

including CPU, memory, disk storage, and network, though the balance of these

components may not match real applications.
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The longevity of TPC-C has proven its ability to scale; results published as

of August 24, 2013 range in performance from 9,112 tpmC to 30,249,688 tpmC,

a range of about three orders of magnitude over a period of about 15 years. On

the other hand, much of this scalability is a result of super-tuned configurations

which are increasingly unrealistic [35]. Due to the aging application model,

TPC-C is not particularly relevant today, though it provides historical context

and the energy component of the workload is a realistic measure of the peak

energy required by the test environment.

TPC-E was designed to overcome many of the issues that made TPC-C in-

creasingly unlike modern applications. It uses a more realistic database schema

with diverse data types and enforced constraints. Transactions are more com-

plex than those in TPC-C, and run rules are intended to limit extreme tuning

in the implementation of the benchmark. TPC-E is less I/O-intensive than

TPC-C, resulting in a more typical balance of CPU, memory, disk storage, and

network activity [35, 37]. These improvements over TPC-C make TPC-E a more

relevant measure of OLTP performance; TPC-E with TPC-Energy is a relevant

measure of the energy efficiency of this type of application.

The TPC-H benchmark models a Decision Support System (DSS) rather

than the OLTP model of TPC-C and TPC-E. This type of application typi-

cally consists of a large, mostly static dataset, with complex ad-hoc queries.

TPC-H is closely based on the retired benchmark TPC-D, released in 1994. At

the time of its release, the TPC-D benchmark pushed the limits of the avail-

able database systems, but subsequent optimizations reduced the utility of the

benchmark. Modifications in TPC-H made it more relevant, but the industry

has continued advancing since its release. The TPC has increased the longevity

of TPC-H by introducing new “scale factors” which increase the data set size

without changing the underlying application model [38]. Recognizing that a
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more substantial overhaul was needed to support modern DSSs, the TPC re-

leased a new Decision Support benchmark called TPC-DS in 2012; however, no

results have yet been published, and it remains to be seen whether TPC-DS will

be a viable replacement for TPC-H.

While the relevance of TPC-H may be waning, there has been relatively

little work on energy efficiency of a DSS environment. Using TPC-H with

TPC-Energy may provide valuable information about these types of systems

[39]. Even if the workload is not a perfect simulation of a modern DSS, TPC-

H more closely resembles these environments than other measures of energy

efficiency do.

Reproducibility The specifications for TPC benchmarks include many con-

straints intended to ensure that the benchmark results are valid and that the

required quality-of-service metrics are being met. These requirements help en-

sure consistent results. Each benchmark test must be audited by an approved

auditor to ensure compliance with all of the benchmark requirements. The

TPC-Energy specification adds requirements specific for power analyzers and

environmental factors which must also be included in the TPC-C audit when

reporting energy measurements.

Many TPC benchmark environments (including TPC-C, TPC-E, and TPC-

H) are too large to allow all of the components to have their energy consumption

measured practically; for example, a single TPC-C test could use a cluster of a

dozen or more database servers and even larger numbers of storage arrays. The

TPC-Energy specification allows representative subsets of the environment to

have their energy measured, and then extrapolates these results to the remain-

ing components. The specification requires two equivalent units to be measured

(selected by the auditor), and that their energy measurements are within 10% of

each other; the measurement from the higher of the two is used for the unmea-
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sured components. These rules help to ensure that the energy measurements

are consistent.

The Full Disclosure Report for a TPC results provides substantial detail

about the hardware and software used for the result, allowing the result to be

replicated by others.

The extensive run rules and auditing result in good consistency and repro-

ducibility for results in all three of these TPC benchmarks.

Fairness The TPC benchmarks are developed and approved by members of

the TPC. At the time TPC-C was written, the membership included 16 indus-

try representatives [40], many of whom are competitors. The fact that these

members were able to agree on the specification indicates a level of fairness in

the benchmark definition.

Because TPC-C, TPC-E, and TPC-H are full system benchmarks and each

includes a pricing component, it is expected that any hardware included in the

test configuration is actually used during the test. As a result, power measure-

ments for the full system are a fair measure of the energy used. In some cases,

the benchmark run rules allow the tested configuration to be different than the

priced configuration; for example, the priced configuration may have additional

storage devices which are not needed during the test but would be required to

hold data when running the application over a longer period of time. The TPC-

Energy specification includes provisions for estimating the energy that would

be used by the priced configuration.

The TPC benchmark specifications also include a number of requirements

for service times and other quality of service metrics which must be met by

compliant results.

TPC-C, TPC-E, and TPC-H are benchmark specifications, and do not in-

clude specific implementations. The implementation is provided by the bench-
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mark sponsor, and must be disclosed and published with the result.

The TPC has a detailed fair use policy which restricts how results may be

used and compared.

These factors all contribute to TPC-C, TPC-E, and TPC-H (with TPC-

Energy) being very fair benchmarks.

Verifiability Results from TPC benchmarks must be audited before they

are accepted as compliant. The auditor must be certified by the TPC and

independent from the entity publishing the results. The auditor oversees the

test and verifies that the benchmark application follows the requirements of

the benchmark specification and that details of the environment are reported

accurately.

TPC-Energy includes additional requirements for auditing. Auditors must

receive separate certification from the TPC for TPC-Energy. The auditor must

verify that power is measured following the requirements of the TPC-Energy

specification and that results are reported accurately.

A Full Disclosure Report (FDR) is written by the test sponsor and reviewed

by the auditor. The FDR includes a detailed description of the hardware and

software components of the system as well as descriptions of how each of the

benchmark and TPC-Energy requirements were met (or verified to be met).

The auditing process and extensive disclosure requirements provide a high

level of verifiability in TPC-Energy results with TPC-C, TPC-E, and TPC-H.

Usability Getting compliant TPC benchmark results is a non-trivial task.

Since the implementation is not provided by the TPC, a suitable implementation

must be obtained or developed.

As described above, TPC-C configurations can be quite expensive, with

system costs ranging from hundreds of thousands to millions of dollars. TPC-E
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and TPC-H configurations are only slightly cheaper. In addition to the costs of

obtaining the necessary hardware and software, such large systems can require

substantial effort to set up, configure, and tune.

The auditing process for TPC benchmarks can also be daunting, and adds to

the cost. Full Disclosure Reports often run several hundred pages, largely due

to requirements to disclose the implementation of the transactions and other

application code.

The TPC provides an Energy Measuring System (EMS) package of software

for measuring energy usage. It includes a licensed version of SPEC’s PTDae-

mon software for interfacing with power analyzers and temperature sensors to

automatically collect data from these devices during the run.

The use of a power analyzer adds complexity to running a benchmark; the

complexity is often greater for the large system configurations that are typically

used for TPC-C, TPC-E, and TPC-H publications. The TPC has worked to

simplify this process as much as possible without sacrificing accuracy by allowing

power to be measured for representative subsets of the system under test.

4.2 SPECvirt sc2010

SPEC produces several benchmarks developed by its members. SPEC’s first

benchmark for evaluating virtualized environments in a server consolidation sce-

nario, SPECvirt sc20105, incorporates modified versions of other SPEC bench-

marks (SPECjAppserver2004, SPECmail2008, and SPECweb2005) running in

groups of virtual machines [41]. SPECvirt sc2010 includes optional power met-

rics for either server power (SPECvirt sc2010 ServerPPW) or total power for

both server and storage (SPECvirt sc2010 PPW). The power metrics measure

power at full utilization and at idle. As of August 24, 2013, there are 31

5http://www.spec.org/virt_sc2010
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SPECvirt sc2010 results published on SPEC’s website, but only two results

each for SPECvirt sc2010 ServerPPW and SPECvirt sc2010 PPW.6

Relevance Server consolidation is one of the most common uses of virtualiza-

tion technology, allowing multiple applications that often run at low utilization

to be run on a single physical server at higher utilization. One of the drivers of

consolidation is reduced energy consumption since most servers have the high-

est efficiency (performance per watt) at high utilization. A benchmark focusing

on server consolidation therefore provides a useful measure of server energy

efficiency.

The component workloads that make up SPECvirt sc2010 represent fairly

typical server applications, including an enterprise Java application with database

access, mail serving, and web serving. While the actual applications being con-

solidated in real-world environments may be different, the behavior of these

applications is representative of others.

SPECvirt sc2010 power measurements are optional. When power data is

included, it must be measured at full load and no load (active idle). This

provides upper and lower bounds on the energy usage, but no intermediate load

levels are included.

Reproducibility Compliant SPECvirt sc2010 results must include a detailed

description of the hardware and software configuration used. Reproducing a

particular test result is non-trivial since these are complex environments with

many components that could influence performance and/or energy usage.

Run rules for the benchmark define several quality of service (QoS) metrics

which must be met in order to have a compliant result. These metrics indi-

cate some level of consistency in the results and ensure that the component

6In May, 2013, SPEC released SPECvirt sc2013 as a replacement for SPECvirt sc2010.
The new version is very similar, but includes more relevant workloads.
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benchmarks were running properly.

Fairness Use of SPECvirt sc2010 results is subject to the SPEC fair use poli-

cies, which promote full disclosure when using the results and attempt to disal-

low unfair comparisons of results.

Because power measurements are an optional component of the benchmark,

run rules prohibit comparisons between results that include power measurements

and those that do not.

SPEC requires that software used to run the benchmark meets certain stan-

dards (such as HTTP 1.1 compliance for the web server component) but does not

dictate use of specific software packages, allowing individual testers to choose

software packages that are relevant for their users. SPEC provides the imple-

mentation of the benchmark and client driver software, but leaves the tester with

the freedom to configure the environment appropriately (within the confines of

the run rules).

Verifiability SPECvirt sc2010 results must be reviewed by SPEC before pub-

lication. This peer review process gives credibility to the results. The review

also ensures that the environment is described in sufficient detail.

The SPECvirt sc2010 harness performs a variety of validity checks which

give credibility to the accuracy of the results. The report includes a variety of

information about the performance of each virtual server; inconsistencies in this

data would suggest possible non-compliance with the run rules.

SPEC PTDaemon is used to collect power and temperature data. This data

is used in accordance with the SPEC Power and Performance Methodology,

which includes requirements for the accuracy of the results (according to vendor

specifications).
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Usability Virtualized environments can be complicated to configure. The

workloads that make up SPECvirt sc2010 are also non-trivial, resulting in ad-

ditional complexity to the configuration.

The harness provided by SPEC simplifies the actual running of the bench-

mark, and SPEC PTDaemon automates the collection and correlation of power

and temperature data.

4.3 SPECweb2009

SPECweb20097 is a now-retired benchmark of static and dynamic web serving.

It is based closely on its predecessor, SPECweb2005, but requires power mea-

surements. The benchmark consists of three different test scenarios: Banking,

Ecommerce, and Support. Three different scripting languages, ASP, JSP, and

PHP, are supported for dynamic pages; results obtained with different scripting

languages cannot be compared to each other. Only 8 results were published

before SPECweb2009 was retired.

SPECweb2009 includes three distinct workloads: Banking, Ecommerce, and

Support. Each of these three has different characteristics. For example, the

Banking workload emulates a typical online banking site; SSL is used for all

requests. The Ecommerce workload includes users searching for products, with

some portion of the users choosing to buy a product. This workload uses a mix of

SSL and non-SSL requests. The Support workload simulates a support website,

and emphasizes downloads of large files (e.g. user’s guides or firmware updates),

with no usage of SSL [42]. All three workloads include a mix of dynamic and

static requests.

The Ecommerce workload is used to measure power consumption at 6 dif-

ferent load levels: 100%, 80%, 60%, 40%, 20% and 0% of the activity measured

during the Ecommerce workload.

7http://www.spec.org/web2009
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Relevance The three applications represented in the benchmark are all ex-

amples of commonly used web applications. Each was developed in part from

analysis of logs from real applications, leading to realistic workflows, mixes of

static and dynamic content, and page sizes.

Power data is a required component of the benchmark, forcing testers to

balance energy efficiency with peak performance when designing and tuning the

configuration. Energy is measured at multiple levels of utilization, providing

readers with energy efficiency data that is relevant for servers which run at less

than full utilization.

Web serving performance appears to be of less interest than it was several

years ago, perhaps contributing to the short lifetime of this benchmark before

it was retired.

Reproducibility The SPECweb2009 report includes a detailed description of

the hardware used for the test as well as software configuration and tuning.

Typical SPECweb2009 results require 64 or more client systems to drive a

single server. This makes it difficult and expensive for an independent tester to

reproduce a published result.

Fairness A variety of different technologies are used for generation of dynamic

web pages. SPECweb2009 includes implementations for three of these (ASP,

JSP, and PHP) in order to allow the use of a variety of web server software. The

run rules include provisions for implementing support for additional scripting

languages.

Use of SPECweb2009 results is subject to the SPEC fair use policies, which

promote full disclosure when using the results and attempt to disallow unfair

comparisons of results.

The SPECweb2009 run rules allow the use of open-source “Community Sup-
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ported Applications” provided that they meet certain criteria that indicate that

the application is stable and adequately supported.

Verifiability SPECweb2009 automatically validates compliance with many of

its run rules, including meeting response time constraints. Many performance

values are included in the report, allowing for some amount of independent

verification of results.

At least one result from a test location must be reviewed and accepted as

compliant by SPEC before any result obtained at that location may be publically

disclosed. This rule is intended to demonstrate that the licensee is able to

produce compliant results. SPEC encourages licensees to submit all of their

results for review. SPEC members may request full disclosure reports for any

publically disclosed SPECweb2009 result, whether or not it was submitted for

review by SPEC.

Power and temperature data is verified in accordance with the SPEC Power

and Performance Methodology.

Usability Setting up an environment for a SPECweb2009 run can be com-

plicated. It often involves at least 64 client systems. Each component of the

environment must be set up carefully in order to deliver compliant and optimal

results.

The SPECweb2009 client software automates the actual run and collection

of the required data. SPEC PTDaemon is used to record power and temperature

data from the power analyzer(s) and temperature sensor(s).
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4.4 SPECpower ssj2008

SPECpower ssj2008 was the first industry-standard benchmark specifically de-

signed for measuring energy efficiency of servers.8 Released in December 2007,

the benchmark measures power at multiple levels of utilization to show the

server’s power consumption at full utilization, active idle, and several points in

between. This spectrum of load levels shows the ability of the server to dynam-

ically reduce power consumption when the full resources of the server are not

needed [43].

SPECpower ssj2008 is currently the most widely-published energy efficiency

benchmark, with 461 results published on SPEC’s website9 as of November 19,

2013. This relatively large number of results provides value to those trying to

identify an energy efficient server to purchase, as well as for researchers studying

trends in the results.

The transactions executed by SPECpower ssj2008 leveraged code from the

SPECjbb2005 benchmark, which is in turn based on TPC-C transactions but

maintains data in memory instead of using a database. Despite this history,

SPECpower ssj2008 results are not comparable to either of these predecessors.

The primary metric for the benchmark is “overall ssj ops/watt”, which is the

sum of the performance (measured in ssj ops) at each of the 11 load levels

(including at active idle) divided by the sum of the average watts at these 11

load levels.

Relevance The “SSJ” in SPECpower ssj2008 stands for Server Side Java.

The benchmark is intended to mimic a Java server application, but does not

make use of Java EE (Java Platform, Enterprise Edition) middleware or a

database like many such applications do. It is a multi-threaded application

8The author of this paper has been a participant in SPEC’s power committee since 2006,
and was the lead developer for SPECpower ssj2008.

9http://www.spec.org/power_ssj2008/results/
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and in most cases runs multiple Java Virtual Machines (JVMs). It stresses the

CPU and moderate amounts of memory, but does not make any direct use of

disk storage and includes only trivial network activity.

The business logic in SPECpower ssj2008 is simple compared to most mod-

ern server applications. Because the benchmark implementation is based on the

popular SPECjbb2005 benchmark (which was in turn based on SPECjbb2000),

the critical code paths in SPECpower ssj2008 are heavily optimized in major

JVM implementations. While this makes the application less representative

of real applications, it is not necessarily a bad thing for a benchmark focused

on energy efficiency – since the major code paths are already optimized, sys-

tems can compete primarily on their ability to reduce power consumption at

lower utilizations, and not so much by improvements in raw performance due

to software optimizations.

When SPECpower ssj2008 runs with multiple JVMs, each JVM runs in-

dependently of the others, with no shared data. This allows the application

to scale almost perfectly to large systems, at the expense of some realism.

SPECpower ssj2008 also allows runs for multiple systems, as long as those sys-

tems are homogeneous and include some shared infrastructure. The intended

use of this feature is for systems such as blades that have multiple systems in

the same chassis. Power usage cannot be measured for individual blades, so the

ability to run the benchmark on multiple systems to produce a single result is

an important feature for measuring energy efficiency in these environments.

The most important feature of SPECpower ssj2008 is its ability to run mul-

tiple load levels at different levels of utilization (100%, 90%, ..., 10% and Active

Idle). This demonstrates the server’s ability to reduce power consumption at

low utilizations. While the official score weights each load level equally, the

results for each load level are described in the report so consumers can weight
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the load levels differently for their specific purposes.

SPECpower ssj2008 includes several customizable options that can change

its behavior. These options are not allowed for compliant runs, but can be

useful for research purposes [44]. For example, when running with multiple

JVMs, each JVM can be configured to run a different sequence of load levels.

This could be used to mimic environments that have multiple workloads that

have different usage patterns.

Reproducibility Java applications tend to have more variable performance

than native applications due to the impact of garbage collection, just-in-time

(JIT) compilation, and timing differences between threads. As a result, run-to-

run consistency of SPECpower ssj2008 is a bit higher than some other bench-

marks. Because each run only takes about 70 minutes, testers often do multiple

runs and submit the best.

SPECpower ssj2008 establishes the peak throughput for a system by running

through a “calibration” process which runs transactions as fast as possible for

three intervals; the calibrated throughput is the average of the last two of these

intervals. The first interval serves as a warmup period to allow the benchmark

to achieve steady state. Testers are allowed to increase the number of calibration

intervals to as many as 10 in order to give it sufficient time to warm up; the

calibrated throughput is always the average of the last two calibration intervals

regardless of the total number [44].

After calibration, the workload runs transactions at the different load levels

by inserting delays between batches of transactions. The run is automatically

marked invalid if the actual throughput is not within 2% of the target through-

put (or up to 2.5% less than the target at the 90% and 100% load levels). This

ensures that any power management technologies are not preventing the system

from keeping up with the intended work.
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SPECpower ssj2008 submissions are required to include a detailed descrip-

tion of the system under test, with sufficient detail that an independent tester

should be able to build an equivalent system. Submitters are required to include

any configuration details (such as power management settings and other BIOS

options) which are required to reproduce the result. Results are peer-reviewed

by SPEC members before they are accepted and published on SPEC’s web page;

however, not all details can be verified with 100% certainty.

SPEC maintains a list of “Accepted Power Analyzers” which are supported

by SPEC PTDaemon and have been demonstrated to meet the requirements

listed in the run rules. These include minimum requirements for accuracy which

ensure that power data is accurate even when comparing data from runs with

two different analyzers. Analyzers are required to have been calibrated within

the past year to ensure the measurements are accurate.

Fairness SPECpower ssj2008 was developed by a committee with represen-

tatives from several companies from the computer server industry, along with

participants from academia [43]. Since the workload is written in Java, it re-

quires a complaint JVM to run. SPEC supplies binaries (compiled Java class

files packaged in jar archives) which must be used for the test; recompilation

and any modification of the source code is not allowed.

SPEC has a comprehensive fair use policy for results obtained with SPEC

benchmarks. SPECpower ssj2008 does not allow estimated results to be pub-

lished; it does, however, allow results to be published without review by SPEC

as long as at least one result has been accepted by SPEC from the same test

location. This is intended to ensure that the tester understands how to properly

run the benchmark and configure a power analyzer. Any results published on

SPEC’s web site must be reviewed and accepted by SPEC.

Additional fair use requirements apply when comparing results. All com-
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parisons must include both performance and power metrics, and comparisons

of results at lower load levels must also reference the performance and power

metrics at the 100% load level. These rules are intended to restrict misleading

comparisons.

Verifiability SPECpower ssj2008 includes a large number of self-validation

checks to ensure that a result is compliant with the run-rules. These checks give

the testers a high degree of certainty that a result that is not marked invalid is

indeed compliant. SPEC’s peer-review process adds greater confidence in the

accuracy of results posted on SPEC’s web page.

The initial release of SPECpower ssj2008 did not include checks of power

analyzer uncertainty. In general, the uncertainty values will be acceptable as

long as the analyzer ranges are set appropriately; when they are not set cor-

rectly, the measured values may not have sufficient accuracy to meet the criteria

specified in the benchmark’s run rules. The range settings can be confusing to

new users, and in the initial release of the benchmark the accuracy could only be

validated through complex calculations which depended on the specific power

analyzer being used. This was a frequent source of early SPECpower ssj2008

results being rejected. A later update of SPECpower ssj2008 (including a new

version of the SPEC PTDaemon) included support for calculating the uncer-

tainty of the measurements automatically, allowing the run to be marked invalid

if the uncertainty is higher than allowed by the benchmark. After this and other

enhancements, the main issues with results submitted to SPEC are editorial in

nature and can be addressed without re-running the benchmark.

SPEC allows benchmark submission files to be edited after the run to cor-

rect descriptive information such as the processor characteristics and operating

system name, but does not allow the results themselves to be modified. Check-

sums are computed to confirm that non-editable portions of the results file are
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not modified. While this could be subverted by a determined cheater, it does

prevent inadvertent edits or casual attempts to “improve” a result.

Another characteristic of SPECpower ssj2008 that aids in verifiability is that

an extensive amount of performance and power data is included in the full

disclosure report. If a particular result appears to be unrealistic, reviewers can

examine these details to confirm that the data is consistent with the result [44].

Overall, the verifiability of SPECpower ssj2008 is quite good.

Usability SPECpower ssj2008 is relatively easy to run. A quick-start guide

provided with the benchmark (and available on the Internet10) outlines the

steps in sufficient detail for new users to make their first run. Further details

are available in a more extensive user’s guide11. A minimum of two systems

is required for running the benchmark; in addition to the system under test, a

controller system is required for running the Control and Collect System (CCS)

and PTDaemon.

Most of the complexity of getting a compliant run is related to the con-

figuration of the power analyzer. SPEC’s Power Measurement Setup Guide12

attempts to simplify the process with details for setting up each type of power

analyzer and temperature sensor such that PTDaemon will be able to com-

municate with it. Details for connecting the system under test to the power

analyzer are left to the documentation provided with the power analyzer itself.

The Power Measurement Setup Guide also describes how appropriate current

range settings can be determined and configured.

As described above, SPECpower ssj2008 performs an extensive set of validity

checks which give the tester confidence that the workload is running properly.

This benchmark was designed for volume servers, so suitable servers are

10http://www.spec.org/power/docs/SPECpower_ssj2008-Quick_Start_Guide.pdf
11http://www.spec.org/power/docs/SPECpower_ssj2008-User_Guide.pdf
12http://www.spec.org/power/docs/SPEC-Power_Measurement_Setup_Guide.pdf
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moderately priced and readily available. A variety of power analyzers have

been accepted by SPEC as being capable of producing compliant results; the

cost of these devices varies based on their capabilities, but reasonably-priced

options exist. SPEC PTDaemon also includes support for non-accepted devices

which may not deliver sufficient accuracy for compliant runs but may be suitable

for experimental runs.

SPECpower ssj2008 includes a variety of configuration options that can be

used by expert users to run experiments in non-compliant configurations, but

these options are not needed for typical users. These options are described in

a SPECpower ssj EXPERT.props file which can be ignored by those who don’t

need them.

Overall, the usability of SPECpower ssj2008 is reasonably good given the

complexities inherent in measuring energy usage. Experienced users can quickly

configure the benchmark for new systems, and SPEC provides ample documen-

tation to get new users running.

4.5 JouleSort

The JouleSort benchmark was proposed as an energy efficiency benchmark with

a balanced use of system components (CPU, memory, and disk storage) [15].

At the time it was introduced in mid-2007 it was the earliest of the benchmarks

discussed here to be available. The goal of JouleSort is to sort a fixed amount

of data (10 GB, 100 GB, or 1 TB) with as little energy as possible. New sizes

are added with powers of 10 as they become interesting; in 2012, a 100 TB

result was reported. For each of the dataset sizes there are two different cate-

gories of results: Daytona (commercially supported, off-the-shelf components)

and Indy (no restrictions). JouleSort is a complement for performance-oriented

sort benchmarks13, but with its focus on energy efficiency, JouleSort effectuates

13http://sortbenchmark.org/
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different hardware and software optimizations than is seen in pure performance

benchmarks [45].

Like the other sort benchmarks, JouleSort is an informal benchmark, with

new winners announced yearly, and the current and past winners listed on the

web page. Only the winning configurations (and in some years a close second)

are listed.

Relevance Sorting is a relatively common activity for servers, but it was

chosen primarily because it is a well understood operation that stresses CPU,

memory, and I/O, along with the operating system and filesystem [15]. Its

strength is in its balanced use of all of these system components.

In practice, the workload balance may not be the right balance for most

servers. In the paper introducing JouleSort [15], the winning 100 GB system

had a single Intel Core 2 Duo processor (2 cores, 2 total threads), 2 GB memory,

and 13 disk drives. This configuration may have more disks and less CPU and

memory capacity than are required for many server applications. This is, of

course, a concern for any benchmark: its use of system components may not

match the usage of other applications.

The processor in the original JouleSort paper was a mobile processor and the

disk drives were laptop disks. While these components are more energy efficient

than their server-class counterparts, they may not meet the performance and

reliability requirements for many servers. A benchmark that encourages the use

of these components may not be particularly relevant for servers. More recent

JouleSort winners have made use of Solid State Disks (SSDs), which may be

more relevant for servers, though still not representative of most systems in use

today.

For the smaller dataset sizes, each run is quite short – the 2012 winner for

the 10 GB size completed in just 8.47 seconds. With the 100 GB size, the
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runtime was 133.0 seconds [46]. These short run times may not be particularly

relevant for server workloads.

Due to these limitations, JouleSort is more useful as a demonstration of

technology that can be used to build more energy efficient systems than it is a

benchmark for measuring the energy efficiency of a particular system.

Reproducibility Run-to-run consistency of sorting is generally good; the cur-

rent JouleSort rules use the average of 5 consecutive runs. For the 2012 winners

for 10 GB, 100 GB, and 1 TB, the difference between the slowest and fastest

of these 5 runs was less than 2.5% of the average runtime, and the difference

between the lowest and highest energy of the 5 runs was less than 2%.

The run rules require a description of the system, but don’t dictate what

level of detail must be included. In practice, the winning reports typically

contain reasonable levels of detail, though less than what is required by some

other benchmarks.

Fairness The sort benchmarks were initially defined by one individual. In

recent years they have been maintained by a committee representing three com-

panies; all of the current committee members are past winners of the sort bench-

marks. JouleSort itself was proposed in a paper written by individuals from

Stanford University and HP Labs. Despite the limited breadth of the commit-

tee, none of the benchmark rules appear to favor any particular vendors.

The benchmark rules define the required behavior of a sort implementation,

but do not provide the implementation itself (though a program is provided to

generate suitable input data). Any implementation that meets the requirements

is allowed, so no particular hardware and software are excluded.

Verifiability A validation program is provided for confirming that the output

of the sort is indeed in sorted order. The input generation program provides
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a checksum which is also used in the validation program to ensure that the

same records are included in both the input and output files. JouleSort doesn’t

provide any specific verification of energy measurements, but researchers are

expected to describe the process used.

As described above, the benchmark rules have few specific reporting require-

ments. Since most winning results are submitted by researchers from academia,

the reports typically describe any novel features in detail.

Usability Running a sort program is simple, and the program for gener-

ating suitable input data is provided. Measuring the energy usage during

the test can be more complicated. The JouleSort definition references the

SPECpower ssj2008 requirements for power analyzers, but does not provide a

program to interface with the power analyzer. For the small datasets, the short

duration of the test can make it difficult to get an accurate power measurement.

The largest datasets may be processed by multiple systems working in par-

allel; since these systems may have a large number of power supplies, directly

measuring the power for the entire set of systems may be impractical. The run

rules allow for measuring subsets of the system and making reasonable extrap-

olations to estimate the total power consumption.

The current JouleSort run rules require a “fairly accurate” power analyzer

with ±1% accuracy. It is up to the tester to determine whether or not this level

of accuracy is actually met.

4.6 Related Energy Efficiency Benchmarks

In addition to the energy efficiency benchmarks for servers listed above, there

are a number of other energy efficiency benchmarks that may be relevant for

server environments even though they don’t target servers themselves. These

benchmarks are described briefly below.
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4.6.1 Green500

The Green500 List14 ranks supercomputers according to their energy efficiency

[47, 48]. It is based on the Linpack benchmark used for the TOP500 rankings

of supercomputer performance15.

The TOP500 list has established itself as the premier ranking of supercom-

puters. While Linpack may not be the best possible measure of performance

[16], it is an adequate measure of the performance of supercomputers. As a re-

sult, it makes sense to build on this success as the basis for a measure of energy

efficiency for supercomputers. The creators of the Green500 list acknowledge

that other workloads may behave differently, and have stated an intention of

adapting Green500 to include other workloads in the future.

Green500 only measures energy efficiency at near-peak utilization. This

may be appropriate for supercomputers since they tend to be more heavily

utilized than typical servers. Since it only includes systems on the TOP500

list, Green500 focuses on a narrow subset of systems typically designed for peak

performance, so it may not be representative of more general systems.

4.6.2 SPC

The Storage Performance Council (SPC)16 produces benchmarks to measure

the performance of storage products. Since 2009, the SPC has added energy

extensions to each of their benchmarks in order to report energy efficiency as

well as performance of these products.

The SPC-1 benchmark focuses on mostly random I/O operations including

both reads and writes. The SPC-2 benchmark stresses large sequential I/Os

that are common for some types of commercial applications. The SPC-1C and

14http://www.green500.org
15http://www.top500.org
16http://www.storageperformance.org/
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SPC-2C benchmarks use the same workloads as SPC-1 and SPC-2, but focus

on smaller components of a full storage subsystem.

Power consumption is measured at multiple levels of utilization. Energy

measurements are optional for all of the SPC benchmarks, and only a small

percentage of published results currently include energy data.

Storage is an important component of many enterprise servers. The SPC

benchmarks complement system-level and server energy efficiency benchmarks.

4.7 Summary of Existing Energy Efficiency Workloads

The complexity and diversity of benchmarks makes it difficult to summarize

their quality at a high level. Nevertheless, Table 1 provides the author’s assess-

ment of each of the benchmarks described in previous sections for the qualities

described in Section 3. The basis for these assessments is provided in previous

sections. The author’s work with SPEC may introduce some bias, and assess-

ments from an independent observer could be different.

5 Chauffeur and the Server Efficiency Rating

Tool

In 2009, the EPA announced Energy Star requirements for computer servers

which included a limit on idle power consumption. The EPA also indicated their

intention for a more robust Tier 2 specification which (among other changes)

would incorporate energy measurements with the server under load. The EPA

has been working with SPEC to define a method for collecting these mea-

surements. To that end, SPEC developed the Server Efficiency Rating Tool

(SERT)17 [49].

17http://www.spec.org/sert/
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Table 1: Summary of assessments of energy efficiency benchmark quality

TPC-C w/ TPC-E w/ TPC-H w/
TPC-Energy TPC-Energy TPC-Energy

Relevance Poor Good Fair
Reproducibility Fair Fair Fair

Fairness Good Good Good
Verifiability Good Good Good

Usability Poor Poor Poor
# Results 3a 7a 6a

SPECvirt sc2010 SPECweb2009 SPECpower ssj2008
Relevance Good Fair Fair

Reproducibility Fair Good Good
Fairness Good Good Good

Verifiability Good Good Good
Usability Fair Fair Good

# Results 2 / 2b 8c 444d

JouleSort
Relevance Poor

Reproducibility Fair
Fairness Good

Verifiability Poor
Usability Fair

# Results 23e

a Results published at http://www.tpc.org as of Aug 24, 2013
b 2 SPECvirt sc2010 ServerPPW, 2 SPECvirt sc2010 PPW results published

at http://www.spec.org as of Aug 24, 2013
c Results published at http://www.spec.org. SPECweb2009 is now retired;

no additional results will be published by SPEC
d Results published at http://www.spec.org as of Aug 24, 2013
e Annual winners in each category published at http://sortbenchmark.org
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SPEC recognized that the SERT would have several requirements that dif-

fered from a conventional benchmark. Like SPECpower ssj2008, the SERT

would require the ability to put controlled but variable loads on the system;

however, the SERT would need to be more highly automated and exercise a

variety of workloads.

As a participant in SPEC’s power committee, I designed and implemented

the Chauffeur framework which is the foundation of the SERT. I also assisted

with the design and implementation of many of the SERT “worklets”. This

section will outline the design goals for the SERT, then describe the design for

Chauffeur and how it allows SERT to achieve these goals. The next section will

present results and give a preliminary evaluation of the SERT using the criteria

established in the first portion of this paper.

5.1 Design Goals for the SERT

SPEC has made the design document for the SERT available for public review

[50]. This document includes the following goals for the SERT:

Stress multiple system components In most traditional benchmarks, the

system will be configured with sufficient memory, disk, and other components so

that the benchmark is CPU-bound. Thus, the benchmark defines a particular

balance of system components that will be used in the test; reducing the amount

of memory or IO capabilities would hurt the performance (or fail to run at all),

while adding memory or IO would consume additional power without providing

improved results.

The EPA’s draft 2 ENERGY STAR Version 2.0 Computer Server specifica-

tion18 defines a product family with a range of system components. Qualifica-

tion of the product family is made using a representative set of configurations

18http://www.energystar.gov/index.cfm?c=revisions.computer_servers
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for the family, including minimum, typical, and maximum configurations. As

a result, the SERT must be able to produce reasonable results with a wide va-

riety of configurations with different balances between CPU, memory, and IO

capabilities.

The SERT is intended to show better performance results for systems with

faster components or larger capacities. Where possible, the tests will directly

measure the benefits of additional hardware components added to the system.

In some cases, artificial adjustments may be required to compensate for the

additional power consumed by these components. Adjustments may also be

necessary to account for systems with more room for expansion – for example,

servers with a larger number of DIMM slots may consume more power than

servers with a smaller number of slots even if the extra slots are not populated,

due to the infrastructure required to support those slots.

The initial target for SERT is to measure servers with 1-8 processors and

between 8 GB and 1 TB of memory. Disks contained within the system enclosure

will be tested; external storage is excluded. The SERT can run on a single

system or a group of up to 64 homogeneous servers (such as blades).

While the initial SERT design document indicated that both storage and

network IO would be included, subsequent updates indicated that network IO

would not be included in the first release. This was due to the challenges of

measuring network performance without requiring significant numbers of driver

systems, as well as the relatively small and static power consumption of network

cards.

Multiple synthetic worklets In order to support the necessary range of

systems, multiple workloads are used to exercise different components of the

system, including CPU, memory, and disk storage, as well as a hybrid workload

intended to provide a more balanced use of the system components. Each of
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these workloads is composed of one or more “worklets”. Each worklet uses

different application code to exercise the system differently. By using multiple

distinct worklets, a more balanced measurement of the system capabilities is

obtained.

Because the worklets are intended to stress individual components of the

system, they are somewhat synthetic in nature, although they do perform func-

tions that are often used on computer servers. This is suitable for a general

assessment of a system’s energy efficiency, but does not replace the need for

other benchmarks that focus on specific application areas [3]

SPEC and the EPA are expecting SERT results to be obtained for a large

number of systems and configurations. As a result, it was important to limit

the runtime in order for it to be practical for systems vendors to run SERT

for these systems. However, it is also important for each worklet to run long

enough to produce accurate data. SPEC set a 4-5 hour runtime target for SERT

to balance these factors.

Multiple load levels Since most servers rarely run at full utilization, it is

important to collect energy efficiency data at multiple utilizations in order to

understand how the system is able to reduce power consumption at lower uti-

lizations. Different patterns of system usage may result in different power man-

agement behavior, so for SERT it is important to run each worklet at multiple

load levels. The 4-5 hour target runtime limits the number of load levels that

can be run. SPEC has chosen different numbers of load levels to run for dif-

ferent types of worklets in order to maximize the amount of useful information

obtained during the run. For example, the Disk Storage worklets run fewer load

levels than other worklets because current systems show relatively small contri-

bution to power consumption due to disk (for internal disks). A larger number

of load levels is used for the Hybrid SSJ worklet (based on SPECpower ssj2008)
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to provide more granular data for one worklet that stresses both CPU and

Memory.

The SERT memory worklets run multiple load load levels, but rather than

varying the throughput (amount of work per unit of time), the memory worklets

vary the amount of memory they are using. This measures the ability of the

system to reduce power consumption for memory that is not actively in use.

Cross-platform support The SERT is intended to run on a variety of plat-

forms. Only 64-bit platforms are supported; while most of the worklets run

properly on 32-bit systems, the memory worklets are designed for large memory

capacities that are common on modern servers, and 64-bit operating systems are

required for addressing these memory capacities. Support for specific hardware

architectures and operating systems is defined primarily by the commitments for

testing by SPEC members participating in SERT development; while nothing

is being done to preclude support for other platforms, they can’t be supported

until adequate testing is performed.

The initial version of SERT is written primarily in Java, both because of

its popularity for server applications as well as for ease of portability. Since

Java applications tend to have different performance characteristics than those

written in other languages like C and C++, a future version of SERT is likely

to include worklets written in other languages.

Test “as-shipped” As its name implies, the SERT is intended to be a rating

tool and not a conventional benchmark. In particular, while most benchmarks

encourage fully optimized results under optimal conditions, the SERT is de-

signed to run under more typical conditions with limited optimization [50].

Since a key goal of the ENERGY STAR program is to improve energy effi-

ciency over time, it is likely to require that default system power management
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settings be used in order to encourage vendors to make their default settings as

efficient as possible.

Due to the variety of worklets that are part of the SERT, some amount

of JVM tuning must be allowed in order for the tool to run effectively. The

memory worklets are a particular challenge, since they allocate the majority of

the system memory to the Java heap. The heap sizes themselves are under the

control of SERT, but the JVM may require other command-line options to be

able to effectively use that amount of heap space. In addition, some amount

of performance optimization is necessary in order to ensure that a wide variety

of systems can compete fairly – any particular set of tuning flags (including

the default flags for the JVM) will tend to favor some system configurations

over others. Allowing some tuning also provides flexibility for adapting to new

hardware as well as future versions of operating systems and JVMs that are

released during the lifetime of the SERT.

In order to avoid “super-tuning”, SPEC publishes a list of tuning options

that must be used for compliant results for a particular combination of operat-

ing system, JVM, and processor micro-architecture. A common set of options

must be used for all of the worklets in each workload (CPU, Memory, Storage,

and Hybrid) to help ensure that these options are applicable to a variety of

applications.

5.2 Introducing Chauffeur

The Chauffeur framework was designed to meet the SERT goals outlined in the

previous section. Chauffeur implements common code for running worklets at

multiple load levels and reporting their results, allowing the implementation of

individual worklets to focus on application logic rather than infrastructure. This

infrastructure is significant; while Chauffeur contains over 25,000 lines of code
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(not including comments and blank lines), the combined total of all of the SERT

worklets is only about 13,500 lines, and most of the worklets are implemented

with fewer than 1500 lines of code. Thus, the implementation of new worklets

based on Chauffeur is far simpler than implementing them from scratch.

In addition to supporting SERT, Chauffeur is intended to provide a flexi-

ble framework for future benchmarks and support experimentation for research

purposes.

This section lists some of the key design features of Chauffeur and describes

how they support the design goals of the SERT and meet the requirements for

energy efficiency benchmarks.

5.2.1 Multiple Processes and Multiple Threads

Chauffeur is designed to make use of multiple processes, each with multiple

threads, to make it possible to scale from small single-processor servers to much

larger systems with multiple nodes. The major components of a SERT environ-

ment are shown in Figure 5.

The Chauffeur “Director”, SERT UI, and SPEC PTDaemon instances run on

a controller system that is separate from the System Under Test (SUT). Running

these components on an external system ensures that they are not contributing

to the load on the SUT, particularly at low utilizations where extra tasks could

prevent the server from reducing power as much as possible [49].

Each server in the SUT runs an instance of the Chauffeur “Host” JVM. The

Director communicates with each Host to control the run. The Host launches a

set of Client JVMs to run the actual application code. A new set of Client JVMs

is typically used for each worklet to reduce the influence of different worklets on

each other. Chauffeur also supports configuration options to launch new Client

JVMs only once for the whole suite, for each workload, or at finer granularities

including for every interval of a particular worklet.
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Figure 5: SERT Components

Communication among the JVMs uses a command-driven model, where the

Director initiates transitions to different stages of the run. Some other bench-

marks, such as SPECpower ssj2008, include some automatic state transitions

within each client (for example, as each client moves from pre-measurement

to measurement to post-measurement). This causes difficulty in synchronizing

collection of power data with the performance measurements, and can also cre-

ate challenges for virtualized systems which sometimes have clock skew issues.

Chauffeur’s implementation avoids these issues since the Director controls the

run.

The Client JVMs are usually launched with platform-specific affinity com-

mands to define which processors each JVM will use. While not all real-world

applications are able to use affinity as effectively as Chauffeur, using affinity set-

tings is necessary to scale on large systems; placing affinity under Chauffeur’s

control allows it to be used consistently and the commands to be documented

accurately. Affinity support can be disabled for worklets where it is not appro-
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priate.

5.2.2 Energy Measurements

While Chauffeur can be used for traditional performance workloads, it has been

designed for measuring energy efficiency. It includes support for communicating

with SPEC PTDaemon, which has support for collecting power and temperature

data from a variety of power analyzers and temperature sensors.

Unlike most traditional benchmark frameworks, Chauffeur also has the abil-

ity to drive workloads at various load levels – for example, at 67% and 33% of

the system’s capacity. This support is independent of the workload itself, so

any Chauffeur-based workload can be calibrated and then run at any desired

load level.

It is important to note that these load levels do not necessarily correspond

to CPU utilization. Different hardware platforms and operating systems may

calculate CPU utilization differently, particularly in the presence of multiple pro-

cessors and hyperthreading, so CPU utilization is not a reliable metric for deter-

mining what portion of the system’s capacity is in use [51]. Furthermore, some

workloads may not be CPU-bound. For example, the SERT Storage worklets

operate at low CPU utilization but are gated by I/O performance. Chauffeur’s

calibration mechanism operates independently of CPU utilization.

Another feature of Chauffeur that is important for measuring energy usage

is the ability to run workloads simultaneously on multiple operating system in-

stances. Many modern systems, such as blades, include shared power and/or

cooling infrastructure which make it inaccurate or impractical to measure en-

ergy usage for a single system in isolation. Running workloads across multiple

systems at the same time in a coordinated fashion allows energy usage to be

measured accurately in these environments. This support may also prove to be

useful for measuring performance and energy usage in virtualized environments,
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though such environments are not currently supported by the SERT.

5.2.3 Multiple Workload Support

Chauffeur is intended to make it easy to implement new workloads and worklets.

The SERT includes a dozen worklets, and others are in development for possible

inclusion in future releases. By utilizing the Chauffeur framework, the workload

code consists almost entirely of the actual code being tested, while Chauffeur

itself takes care of configuration, driving the load, inter-process communication,

reporting, and monitoring. New workloads can be created and “plugged in”

without modifications to Chauffeur itself.

Workloads can be executed individually or together in a single run. Support

for multiple workloads is important for energy efficiency measurements since dif-

ferent types of applications can have different energy efficiency characteristics.

Chauffeur can run different workload in the same Java Virtual Machine (JVM)

or launch a separate JVM (with varying configurations) for each workload. In

many cases it is also possible to run transactions from multiple workloads con-

currently.

5.2.4 Easy to Run

Chauffeur includes several features intended to make it easy to produce valid

results. Workloads are self-calibrating. Client JVMs are launched automatically

and can automatically make use of operating system-specific affinity settings.

Appropriate Java heap settings can be calculated automatically based on the

amount of memory available in the system. While the initial release of the

SERT requires some amount of system-specific configuration, one goal for future

updates is to allow users to initiate a run with little or no manual configuration.

Chauffeur also includes support for the collection of system configuration

data which can be used to automatically populate some of the descriptive fields
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in the full disclosure report, or to validate some of the user-entered data. This

support is in its infancy, and the initial release only gathers small subsets of

the configuration data needed to be reported. Future versions should be able to

offer expanded support to gather more data automatically, improving usability

and verifiability.

5.2.5 Flexible Configuration and Data Collection

Chauffeur offers a highly flexible configuration for defining and running work-

loads. Many aspects of the workload execution can be modified through an

XML configuration file, including the number of client JVMs, the length of each

measurement interval, and the sequence of load levels. Chauffeur also provides

the capability to set workload-specific configuration options in the configuration

file.

Most components of Chauffeur can be replaced with different implementa-

tions specified in the configuration file. For example, a researcher could be

interested in mimicking the utilization patterns of a real server. Chauffeur

would allow the researcher to provide a custom “Sequence” implementation

which would read the current CPU utilization from a remote system and then

use that value as the load level target for the next Chauffeur measurement in-

terval. This type of behavior is clearly too esoteric to be part of the standard

Chauffeur implementation, but can be used with Chauffeur due to the ability

to plug in custom implementations (without modification to Chauffeur itself).

A generic “Listener” interface is used to support custom data collection or to

interface with other components. Listeners are notified at various stages of the

run. Chauffeur itself uses Listeners for writing results files, gathering data from

SPEC PTDaemon, and recording garbage collection statistics from client JVMs.

New listeners can be plugged in without modifying Chauffeur itself. Custom

listeners could be used to run platform-specific performance tools, collect data
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from power analyzers that are not supported by SPEC PTDaemon, or to initiate

system configuration changes at different stages of a run.

The current Chauffeur implementation reads the entire configuration at the

beginning of the run and then executes the tasks defined in that configuration;

however, the interprocess communication protocol is designed to run a single

command at a time. It is likely that a future version of Chauffeur will allow

runs to be controlled dynamically and interactively.

5.2.6 Self-validation

Chauffeur includes a framework for validating the results of a run to ensure

that it is compliant with run rules. While not all run rules can be verified

automatically, self-validation is valuable for the people running a benchmark,

people reviewing results, and the people reading published results. For those

running the benchmark, self-validation gives confidence that the benchmark is

running properly and that the results they are getting are compliant. Self-

validation also simplifies the results review process, since the reviewer can be

confident that the result passes these tests, and can focus their review on aspects

of the result that cannot be validated automatically. These tests also give

credibility to published results, since they reduce the likelihood that a result

will later be found to be non-compliant.

The validation framework in Chauffeur allows validation checks to be per-

formed at the beginning of the run, when appropriate, to provide the user with

immediate feedback if the run is launched in a non-compliant manner. More

extensive validation is performed at the end of the run, notifying the user of any

non-compliant aspects of the run that were detected. The same set of checks is

performed when the reporter runs; repeating the validation when the report is

generated allows new validation checks to be added after the initial release to

help catch common issues which are identified in early results – the new version
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of the reporter can be used with existing results to perform these validation

checks.

In many cases, validators can detect that a run is definitely invalid. In other

cases, warnings can be issued when there it is likely that a compliance issue exists

but the validator can’t know for sure. Chauffeur validators can also produce

informational messages, such as notifying users of possible editorial issues.

Architecturally, Chauffeur’s validation framework is independent of SERT,

and new validation rules could be plugged in at run time. In the initial release,

the set of validation rules is hard-coded for the SERT, but this limitation will

be resolved in a future release.

Some sample validation checks that are included in SERT are:

• Checking that the workload code has not been modified or recompiled.

• Ensuring that configuration options are consistent with the run rules.

• Monitoring temperature measurements to confirm that the minimum am-

bient temperature requirements are met.

• Using checksums to detect manual modification of results after a run is

complete.

• Confirming that performance requirements are met (e.g. that a 50% load

level measurement has approximately 50% of the calibrated throughput)

These validation checks cannot completely prevent intentional cheating, they

can prevent accidental mistakes by users and give a high degree of confidence

that a result is valid.

5.2.7 Customizable Reporting

At the conclusion of a Chauffeur run, the results need to be summarized in

a meaningful way to the tester as well as to reviewers and those looking at
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published results. These reports need to include information about the system

configuration and test environment as well as the results themselves.

All of the results of a Chauffeur run are stored in an XML file. Even in a

small environment this file can contain over 3 MB of data for a single run. This

is far more data than can be usefully included in the standard report. Most

users won’t need to see data that is not part of the standard report, but for

research purposes it is often useful to focus on non-default data.

The Chauffeur Reporter can process the results file from a run and produce a

report in HTML and/or plain text formats. It also supports generation of CSV

files (comma-separated values) to make it easy to import summarized results

into spreadsheets or other applications.

The Chauffeur Reporter processes the results file using an XSL transform

to either plain text (when generating CSV files) or to an XML-based represen-

tation of the report, which is then used to generate HTML and text reports.

Custom XSL stylesheets can be passed to the reporter to generate custom re-

ports including whatever data the researcher is interested in. For example, the

SERT results shown in the next section were extracted from the raw results files

using the reporter with a custom transformation and CSV output, which was

then imported into R for statistical analysis. Customized reports will also be

useful for future Chauffeur-based benchmarks which will likely summarize data

differently than SERT does today.

The XML-based report representation includes high-level definitions of ta-

bles, graphs, and text sections. This generic report representation is indepen-

dent of the final output format, and can be used to generate either HTML or

plain text. It is likely that a future version of Chauffeur will also be able to

generate PDF reports as well.
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5.2.8 Portability

The Chauffeur framework is written in Java, and most of the current Chauffeur

worklets are also written in Java to simplify portability.

Applications written in Java may have different performance and energy ef-

ficiency characteristics than applications written in other languages. Chauffeur-

based benchmarks (or a future version of SERT) may include worklets written

in other languages. The Chauffeur framework is designed to allow worklets

(or portions of worklets) to be implemented in other programming languages.

The storage worklets in SERT, for example, use native code to ensure that IO

actually goes to disk and is not cached within the operating system or JVM

[49].

Calls to native code can be implemented using the Java Native Interface

(JNI). This approach results in both Java and native code executing during

every transaction. An alternative approach would be to plug in an alternate

implementation of Chauffeur’s Interval interface which executes the entire in-

terval in native code. Similarly, the transition to native code could be made

at the Sequence, Phase, Worklet, or Workload level. A final approach would

be to re-implement the entire Chauffeur Client in native code, while keeping

the Java-based implementations of the Chauffeur Director and Host. The com-

munications protocol used among the Chauffeur processes intentionally avoids

dependencies on Java functionality (such as Java Serialization) in order to allow

non-Java implementations to fully replace the Java Client implementation.

While these alternative approaches would require significant portions of

Chauffeur code to be rewritten in another programming language, these na-

tive implementations would still be able to take advantage of large portions of

the Chauffeur infrastructure, including the general control mechanisms, con-

figuration support, communication protocols, listener infrastructure, and the
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reporter.

Chauffeur’s support for launching client JVMs with affinity commands does

require platform-specific code. If support for a particular platform is not avail-

able, Chauffeur will launch the JVM without affinitization, which may put that

platform at a disadvantage. Affinity commands can be specified manually, and

affinity support for new platforms can be added without modifications to Chauf-

feur itself.

6 Results and Analysis

The SERT was only recently released and there is not yet adequate public data

to fully evaluate the quality of SERT. In this section, SERT results are presented

to assess how well the SERT meets its design goals. Additional results are shown

from experiments demonstrating how changes to the system configuration can

affect the energy efficiency of the system as measured by SERT.

Results shown in this paper were obtained using the initial public release of

SERT (1.0.0). The results are not fully compliant with SERT run rules, because

power data was not collected using an accepted power analyzer, and temper-

ature data was not collected. Some results may have been invalid for other

reasons as well. Note that SPEC’s fair use rules for SERT prohibit competi-

tive comparisons between results obtained for research purposes (such as those

in this paper) and results associated with an official energy efficiency program

(such as ENERGY STAR).

6.1 Baseline Results

Baseline results were measured on an IBM x3550 M2 with two 4-core 2.93 GHz

Intel Xeon X5570 processors, 32 GB RAM, and a single 300 GB 10K RPM

SATA hard drive. Default UEFI firmware settings were used. The server was

69



running Red Hat Enterprise Linux (RHEL) 6.3. The 64-bit IBM J9 7.0 SR3

JVM was used with no JVM command-line options apart from the heap settings

made by SERT itself.

The system uses two redundant 675 watt power supplies. Because the power

supplies are redundant, the total power consumption of the system is never

greater than what one power supply can provide. During these tests, both

power supplies were connected to separate circuits of an IBM DPI C13 PDU+

power distribution unit (PDU). This PDU can measure power consumption for

each circuit. This device is not supported by SPEC PTDaemon, so a custom

Chauffeur listener was written to collect data from the PDU during the run.

The accuracy of the measurements may not be as good as a calibrated external

power analyzer, but is sufficient for the relative comparisons shown here.

The graphs produced by the SERT reporter for one run in this configuration

is shown in Figure 6. Each of the three graphs includes rows for each of the

SERT worklets, grouped by workload – CPU worklets are highlighted in blue,

memory worklets in salmon, storage worklets in green, and the hybrid worklet in

pink. The Watts and Efficiency Score graphs include data points for each of the

load levels. Since different worklets use different numbers of load levels, some

worklets may show only a single data point while others may show as many as

eight.

The Watts graph shows the average power used during each load level. The

Normalized Performance shows a relative measure of the performance at the

100% load level for each worklet. The performance values are divided by the

corresponding value from a reference system; this gives a common scale to the

disparate worklets (whose raw performance results can vary by multiple orders

of magnitude).

The Efficiency Score for each load level is calculated as the ratio of the
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Idle Power

Idle Power

Idle Power

Idle Power

Figure 6: Baseline SERT Result

Normalized Performance value to the Watts value for that load level (converted

to kilowatts). This is a measure of the efficiency (performance per watt).

6.1.1 Consistency

To assess the run-to-run consistency of the SERT results, 20 runs were performed

on the same system with the baseline configuration. Figure 7(a) shows the

distribution of the Performance results relative to the arithmetic mean result

for each of the worklets in these runs. For the memory worklets each interval

is shown separately, since these worklets vary the amount of memory used for

each interval, resulting in possible differences in behavior in each interval. The

interquartile range of the relative performance for all of the worklets other than

Hybrid SSJ is within ±1% of the mean; aside from a few outliers, the overall

range is within ±2% of the mean. The range for Hybrid SSJ is higher, at about

±2.5% for the interquartile range and ±3% overall.

Similarly, Figure 7(b) shows the distribution of the watts values for each

worklet relative to the mean values. These measurements have less variability,
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with the overall range within ±1% of the mean for most worklets. Worklets that

have lower absolute power results (Storage and Idle) have a somewhat higher

relative range of around ±3% of the mean.

Both performance and power consumption at the 100% load level are shown

in Table 2, along with the coefficient of variation of these values among runs.

Workload Worklet 100% Perf CV Perf 100% Watts CV Watts
CPU Compress 9,472 0.94 286 0.38
CPU CryptoAES 10,831 0.35 271 0.45
CPU LU 16,456 0.21 288 0.22
CPU SOR 21,488 0.08 254 0.33
CPU XMLvalidate 5,294 0.30 268 0.29
CPU Sort 27,764 0.71 262 0.32
CPU SHA256 1,403 0.17 259 0.33
Memory Flood Full 519 1.03 247 0.49
Memory Flood Half 253 1.11 247 0.61
Memory Capacity 4 804,489 0.47 250 0.41
Memory Capacity 8 823,684 0.34 250 0.47
Memory Capacity 16 817,705 0.32 252 0.44
Memory Capacity 32 707,432 0.35 262 0.41
Memory Capacity 64 665,176 0.41 266 0.40
Memory Capacity 128 645,106 0.42 268 0.33
Memory Capacity 256 634,773 0.46 269 0.34
Memory Capacity 512 629,147 0.47 269 0.31
Memory Capacity 1024 626,105 0.50 270 0.33
Storage Sequential 157 0.53 118 1.74
Storage Random 231 0.32 119 1.40
Hybrid SSJ 479,384 2.36 276 0.99
Idle Idle 100 1.79

Table 2: Mean and coefficient of variation (CV) of performance and power
consumption at the 100% load level for each SERT worklet (n = 20 runs),
running in an out-of-the-box configuration (default UEFI options and Baseline
JVM tuning options).

Performance results and power consumption at the 100% load level are ap-

proximately Normally distributed, as shown by the Normal quantile plots in

Figures 8 and 9. The Hybrid SSJ performance results showed bimodal behav-

ior; this is discussed further in Section 6.2.1. It is worth noting that in an earlier

set of data collected for this paper, the quantile plots showed bimodal behavior
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load level for each SERT worklet (n = 20 runs) relative to the mean for that
worklet, running in an out-of-the-box configuration (default UEFI options and
Baseline JVM tuning options).
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for the Storage worklets as well. This was caused by leaving the disk controller

cache enabled (in opposition to SERT requirements); some runs benefited more

from the cache than others. Disabling the controller cache eliminated these

bimodal results.

6.1.2 Multiple Workloads

The SERT uses multiple workloads to stress different components of the system,

and most workloads consist of multiple worklets that exhibit different runtime

behavior. Figure 10(b) shows the mean power consumption for each worklet at

the 100% load level for 20 runs in the baseline configuration.

The CPU worklets had the highest power consumption in these tests, ranging

from 254.5 to 287.8 watts.

The memory worklets use slightly less power than most of the CPU worklets.

These worklets are intended to exercise the memory system; they also use CPU,

but not as fully as the CPU worklets.

The Storage worklets consume less than half of the power of the other

worklets, with power consumption 135.5 - 170 watts lower than the CPU worklets.

The Hybrid SSJ worklet is intended to exercise both CPU and Memory, and

push the system to higher power consumption. In these baseline results, the

Hybrid CPU power is among the highest of any worklet.

Idle power consumption is about 18.2 watts less than the Storage worklets,

and 154.8 - 188.1 watts less than the CPU worklets.

6.1.3 Multiple Worklets

Each of the SERT workloads consists of one or more worklets that execute

different business logic. Figure 10 shows the performance (normalized to the

SERT reference system) and power consumption at the 100% load level for each

of the worklets in the baseline runs.

74



●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

−2 −1 0 1 2

93
50

95
00

CPU Compress

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●
●

●
●

●

●

●

●

●
●

● ●

●●

●

●

●
●

●●

−2 −1 0 1 2

10
80

0
10

90
0

CPU CryptoAES

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

16
40

0
16

48
0

CPU LU

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●
●

●

●

●
●

●●
●

●
●

●

●●

●

●
●

●

●

●

−2 −1 0 1 2

21
44

0
21

50
0

CPU SOR

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

● ●

−2 −1 0 1 2

52
60

52
90

53
20

CPU XMLvalidate

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

−2 −1 0 1 2

27
40

0
28

00
0

CPU Sort

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

−2 −1 0 1 2

14
00

14
06

CPU SHA256

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

−2 −1 0 1 2

51
0

52
0

Memory Flood_Full

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●
●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●
●●

−2 −1 0 1 2

24
5

25
5

Memory Flood_Half

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

−2 −1 0 1 2

80
00

00
81

00
00

Memory Capacity_4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

82
00

00
82

80
00

Memory Capacity_8

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●●●

●

●

●

●
●

●● ●

●

●

●●●●

●

●

−2 −1 0 1 2

81
20

00
82

00
00

Memory Capacity_16

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

70
20

00
70

80
00

Memory Capacity_32

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

66
20

00
67

00
00

Memory Capacity_64

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●
●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

64
00

00
64

80
00

Memory Capacity_128

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

63
00

00
63

80
00

Memory Capacity_256

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●
●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

62
40

00
63

20
00

Memory Capacity_512

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

62
00

00
62

80
00

Memory Capacity_1024

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●●

●

●

●● ●

●
●

●
●

●●

●

●

●

●

−2 −1 0 1 2

15
5.

0
15

7.
0

Storage Sequential

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

−2 −1 0 1 2

23
0.

0
23

1.
5

Storage Random

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

● ●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

46
50

00
48

50
00

Hybrid SSJ

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 8: Normal quantile plots for the performance at the 100% load level for
each of the worklets with out-of-box tuning options (n = 20 runs).
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Figure 9: Normal quantile plots for the power consumption at the 100% load
level for each of the worklets with out-of-box tuning options (n = 20 runs).
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Figure 10: SERT results showing the power consumption and normalized perfor-
mance at the 100% load level for each worklet in an out-of-the-box configuration
(default UEFI options and Baseline JVM tuning options). Results are the mean
of n = 20 runs; error bars show the 95% confidence intervals.
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The need for multiple worklets is illustrated by the significant variation in the

normalized performance scores and power consumption of each worklet within

a workload. If the worklets in a workload exercised the system in the same

way, they would be expected to have an equivalent performance score relative

to the reference system, and the power consumption of each worklet would be

the same. If this were the case, there would only be a need to measure one of

these worklets.

The baseline data shows variation of 3.4 in the normalized performance

scores and 33.3 watts in power at the 100% load level for the CPU worklets.

These ranges are significant and demonstrate the importance of basing energy

efficiency metrics on multiple worklets.

6.1.4 Multiple Load Levels

Each worklet is run at multiple load levels to show the ability of the system to

reduce power consumption when the system is running at lower utilizations. The

number of load levels for each worklet was chosen by SPEC to balance the value

of the data against the run time required for each measurement interval. The

CPU worklets run 4 load levels (at 100%, 75%, 50%, and 25% of the maximum

throughput), the Storage worklets run 2 load levels (at 100% and 50% of the

maximum throughput), and the Hybrid worklet runs 8 load levels (100% down

to 12.5% of the maximum throughput, in 12.5% increments). The memory

worklets vary the amount of memory used rather than the rate of memory

usage: Flood runs at “Full” and “Half” levels, using nearly all of the available

memory and about half of the available memory, respectively. The Memory

Capacity worklet uses 9 data set sizes ranging from 4 GB to 1 TB; the system

is able to make use of available memory to cache results so they don’t have to

be recomputed on demand.

SERT validity checks verify that the target throughput is achieved during

78



the measurement interval, within a threshold of ±2% (or up to −4% for the

100% load level, since minor fluctuations in throughput can cause the target to

be missed at high utilizations). The target and actual percentage for each load

level in one of the baseline runs is shown in Table 3. All of the load levels are well

within the limits required by the SERT validation. The memory worklets are

not included in this table since they vary memory usage rather than transaction

rates.

Workload Worklet 100.0% 87.5 75.0 62.5 50.0 37.5 25.0 12.5
CPU Compress 99.3 75.0 50.1 25.0

CryptoAES 99.9 74.9 49.9 25.0
LU 99.6 75.1 50.0 25.0
SOR 99.9 75.0 50.0 25.0
XMLvalidate 100.0 75.0 50.0 25.0
Sort 99.6 74.9 50.0 25.1
SHA256 99.7 74.8 50.0 25.1

Storage Sequential 99.2 49.8
Random 99.2 49.7

Hybrid SSJ 99.2 87.2 75.1 62.5 49.8 37.6 25.0 12.4

Table 3: Actual percentage throughput for each load level for one SERT run in
an out-of-the-box configuration (default UEFI options and Baseline JVM tuning
options).

On the configuration used for the baseline results, power consumption changed

roughly linearly with the throughput for the CPU and Hybrid worklets. This

can be most clearly seen in the Hybrid SSJ results in Figure 11, where the

values at each load level are evenly spread between the maximum (100%) and

minimum (12.5%) load levels. There is, however, a more significant reduction

in power consumption between the 12.5% load level and the Idle Power. The

idle measurement period allows the system to enter a lower performance state,

and some system components may be in a sleep state while the application is

not actively executing transactions.

This linearity of power consumption is a characteristic of the system under
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out-of-box tuning options. Values are the mean of n = 20 runs.
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test and its configuration. Other systems may show larger changes in power

consumption at some load levels than others. This was already exhibited in

the two SPECpower ssj2008 results shown in Figure 4. The configuration in

Figure 4(a) has a fairly linear power consumption curve (shown in the blue line),

while Figure 4(b) has a more concave curve where the system power changes

more drastically at higher load levels than at low utilizations.

Each of the CPU worklets has very similar power consumption at low uti-

lizations, and these match closely to the corresponding load levels for Hybrid

SSJ as well. There is somewhat more variation at the 75% and 100% load levels.

The memory worklets show very little variability in power consumption in

this environment. Because different measurement intervals of Flood access dif-

ferent amounts of memory, the main opportunity for systems to reduce power

consumption in Flood Half is to reduce the power of the memory that is not in

use. In Capacity, there is some variation in the amount of memory accessed, but

the main difference is in the percentage of transactions which can be satisfied

using the in-memory cache of results. This results in better performance for

smaller data set sizes which can be kept completely or mostly in the system’s

physical memory.

The Storage worklets in this environment already run near the idle power,

so there is little opportunity for power reduction. This is the main reason why

the storage worklets run fewer load levels than the other worklets. Systems

with larger numbers of disks may have higher power requirements to exercise

those disks, so the power savings at low utilizations may be greater in these

environments.
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6.2 Effects of Tuning

The baseline results above used default UEFI settings, operating system config-

uration, and JVM tuning parameters. In benchmark results, changes to these

settings are usually made in order to optimize performance or energy efficiency.

In the SERT, tuning is limited in order to limit “super-tuning”, promote compa-

rability among results, and more closely measure out-of-the-box configurations.

This section shows the impact of changing optimization parameters on both

performance and power consumption.

UEFI Firmware and the JVM both provide a large number of options, and

an exhaustive search for the best combination of options is impractical. Appro-

priate settings were identified by finding SPECjbb2005 and SPECpower ssj2008

results from similar configurations19.

6.2.1 JVM Tuning Options

The baseline results described in Section 6.1 used no JVM tuning options aside

from those set automatically by SERT (e.g. the initial and maximum heap

size). The SERT run rules require compliant runs to use a pre-defined set of

options depending on processor, operating system version, JVM version, and the

amount of memory available. The list of options only includes current processor

versions, so the system used in these tests has no defined options. However, at

the time of this writing all of the Intel processors have identical options defined

when running in Linux using IBM J9. These “Standard” options are listed in

Table 4.

The results referenced above for both SPECjbb2005 and SPECpower ssj2008

used the same JVM tuning options. These “Optimized” options are also listed

19See http://www.spec.org/osg/jbb2005/results/res2009q2/jbb2005-20090512-00722.

html and http://www.spec.org/power_ssj2008/results/res2009q2/power_

ssj2008-20090519-00164.html
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Table 4: JVM Tuning Options Used

Configuration Options
Baseline none
Standard -Xaggressive -Xcompressedrefs -Xgcthreads2

Optimized -Xaggressive -Xcompressedrefs -XlockReservation

-Xnoloa -XtlhPrefetch -Xgcthreads4

in Table 4. The options used by these published results included -Xlp to en-

able large-page support. The “Optimized” options used in this paper do not

explicitly enable large page support because RHEL 6.3 includes support for

Transparent Huge Pages which has a similar effect without manual configura-

tion.

To assess the impact of JVM tuning on SERT results, runs were performed

using both the Standard and Optimized options on the same system that was

used for the baseline results. Following SERT conventions, no tuning options

were used for the Storage or Idle workloads.

Figure 12 shows the difference in the mean performance, watts, and effi-

ciency score at the 100% load level for each worklet as a result of using the

Standard JVM options instead of the Baseline options. Each graph shows the

95% confidence interval from a two-sided t test.

The Standard JVM tuning parameters resulted in substantial performance

improvements to the XMLvalidate, Sort, Capacity, and SSJ worklets, as can

be seen in Figure 12(a). Flood performance declined, while other worklets had

little or no change. The performance improvement was most significant for the

small sizes of the Capacity worklet, where most results can be returned from an

in-memory cache rather than being recomputed.

Most of the CPU worklets consumed slightly less power when using the

Standard options, as shown in Figure 12(b). The largest change in power con-

sumption was for the XMLvalidate worklet, which increased by 6.9 watts. Power
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(c) Efficiency Score

Figure 12: SERT results showing the change in performance, power consump-
tion, and efficiency score at the 100% load level for each worklet using SERT
Standard JVM options compared to the Baseline configuration. Results are the
95% confidence intervals from a t test comparing 10 runs with the Standard
configuration to 20 runs in the baseline configuration.
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usage declined slightly for Flood and increased slightly for some intervals of Ca-

pacity. Other worklets had little or no change.

Figure 12(c) shows that the efficiency score calculated by SERT for the 100%

load level (the ratio between the Normalized Performance and the Watts at that

point, multiplied by 1000) changed with a shape similar to the performance

scores, due to the large change in performance relative to the change in power.

Using the Optimized JVM settings from Table 4 resulted in very little change

compared to the Standard options. Figure 13 compares these two configurations.

Even where there were statistically significant changes in the performance, the

differences were too small to be important. There was also little change in the

power consumption, except in SSJ where the power rose by 3.3 watts. This

resulted in a small decrease in the Efficiency Score for SSJ, while the other

worklets had no statistically significant difference. Therefore, it appears that

the SERT Standard options provide good performance for this configuration.

The SERT Standard JVM Options were chosen to provide run-to-run consis-

tency as well as performance. In Section 6.1.1 we saw that with baseline CPU

options the results of the Hybrid SSJ worklet were bimodal, with some runs

having performance significantly better than others. When using the Standard

options the results were more Normally distributed, as shown in Figure 14.

6.2.2 UEFI Settings

The SPECjbb2005 and SPECpower ssj2008 runs referenced above used different

UEFI firmware settings. It is assumed that the SPECjbb2005 configuration was

tuned for performance, while the SPECpower ssj2008 environment was tuned

for energy efficiency. The settings used for Default (baseline), Performance-

Optimized, and Energy-Efficient configurations are shown in Table 5. Results

in this section used the Baseline JVM options.

Using performance-optimized UEFI settings yielded small but statistically
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Figure 13: SERT results showing the change in performance, power consump-
tion, and efficiency score at the 100% load level for each worklet using Optimized
JVM options compared to the SERT Standard options. Results are the 95%
confidence intervals from a t test comparing 10 runs with the Optimized config-
uration to 10 runs in the Standard configuration.
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Figure 14: Normal quantile plot for the performance and power consumption of
Hybrid SSJ at the 100% load level with SERT Standard JVM options (n = 10
runs).

Table 5: UEFI Tuning Options Used

Energy
Option Default Performance Efficient
Turbo Mode Disable Enable Disable
Power C-States Disable Disable Enable
C1 Enhanced Mode Enable Disable Enable
Cache Data Prefetch Enable Disable Disable
QPI Link Speed Select Max Perf. Max Perf. Min Power
Memory Speed Max Perf. Max Perf. Min Power
Demand Scrub Enable Disable Enable
Onboard Slot 1 Enabled Enabled Disabled
Onboard Slot 2 Enabled Enabled Disabled
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significant improvements to performance for the CPU and Hybrid worklets, with

slightly larger improvements to the memory worklets, as shown in Figure 15(a).

However, Figure 15(b) shows that this improvement came with an increased

power consumption of 35.9 to 62.1 watts for these worklets. In Figure 15(c) we

see that this resulted in a net loss in efficiency at the 100% load level.

The high power consumption at the 100% load level could be a reasonable

trade off if it is only significant at the 100% load and the power consumption at

lower utilizations is similar to the baseline. This might be the case if the system

entered a “turbo mode” to increase performance when the system is fully utilized

but operated similar to the default configuration at lower utilizations. However,

Figure 16 suggests that this is not the case, since the power consumption is

significantly higher than the baseline at all utilizations.

The use of Energy Efficient UEFI options had almost no impact on the

performance of the CPU and Storage worklets relative to the Default settings

(Figure 17). There was a small but statistically significant reduction in per-

formance of the Hybrid and Memory Capacity worklet, and a more significant

reduction (24.1%) for the Memory Flood worklet.

These options resulted in broad reductions in power consumption. The Idle

and Storage worklets (which run with near-idle power) improved by around 8.1

watts. The Memory Capacity and most of the CPU worklets improved by 12.1

- 13.8 watts, while CPU Compress had a slightly larger reduction of 16.4 watts.

Hybrid SSJ improved by 19.2 watts. The greated reduction in power was for

the Flood worklet (21.4 watts).

The reduction in power consumption resulted in a small improvement in the

Efficiency Score for most worklets. The significant improvement in power usage

in Flood was insufficient to overcome the decline in performance, resulting in a

lower Efficiency Score.
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Figure 15: SERT results showing the change in performance, power con-
sumption, and efficiency score at the 100% load level for each worklet using
Performance-Optimized UEFI settings compared to the Default settings. Re-
sults are the 95% confidence intervals from a t test comparing 10 runs with the
Performance-Optimized configuration to 20 runs in the Default configuration.
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Figure 16: SERT results showing the change in power consumption at multiple
load levels for CPU and Hybrid worklets using Performance-Optimized UEFI
settings compared to the Default settings. Results are the mean difference
from 10 runs with the Performance-Optimized configuration and 20 runs in the
Default configuration.

6.2.3 Combined Effects

Use of the SERT Standard JVM options improved energy efficiency for most

worklets by improving performance with minimal impact on power consumption.

Using Energy Efficient UEFI options improved efficiency by reducing power

consumption with minimal impact to performance for most worklets. Figure 18

shows the combined effect of using both the Standard JVM options and Energy-

Efficient UEFI settings.

This combination of tuning yields performance improvement relative to the

baseline configuration for nearly all worklets, with the most notable exception

being Flood. The performance was slightly less than what was achieved with the

Standard JVM options using the Default UEFI settings. Power consumption

was reduced relative to the baseline configuration for all worklets; in many

cases the reduction in power was greater than when the Energy Efficient UEFI
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Figure 17: SERT results showing the change in performance, power consump-
tion, and efficiency score at the 100% load level for each worklet using Energy
Efficient UEFI settings compared to the Default settings. Results are the 95%
confidence intervals from a t test comparing 10 runs with the Energy Efficient
configuration to 20 runs in the Default configuration.
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Figure 18: SERT results showing the change in performance, power consump-
tion, and efficiency score at the 100% load level for each worklet using Energy-
Efficient UEFI settings and SERT Standard tuning options compared to the
Baseline configuration. Results are the 95% confidence intervals from a t test
comparing 10 runs with the Energy Efficient/Standard configuration to 20 runs
in the Baseline configuration.
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settings were used with the Baseline JVM options. Overall, this combination of

tuning resulted in better energy efficiency than the baseline configuration. In

most cases, the improvement in the Efficiency Score was greater than when any

configuration change was made in isolation.

6.2.4 Evaluation of the Impact of Tuning

The previous sections have shown that tuning can affect worklets differently.

Options that help one worklet may have little or no impact on others, and in

some cases may hurt the performance or power consumption of other worklets.

SERT encourages generally-applicable tuning options by requiring the same set

of options to be used for all of the worklets in a workload.

Performance-only benchmarks encourage highly tuned environments; ven-

dors use a variety of tuning options to improve their results. In some cases,

particularly with UEFI settings, these performance tuning options may increase

power consumption disproportionately with the performance gain. For this rea-

son, performance tuning options should not be set blindly without assessing

their impact on the applications that will actually be running on the server;

they may increase power consumption without improving performance.

This also illustrates a challenge for benchmarks that have an “optional” en-

ergy efficiency benchmark. This often results in energy usage not being reported

for highly tuned environments that yield the best performance, while environ-

ments tuned for energy efficiency have worse performance. Requiring energy

measurements for all submissions of a benchmark still allows testers to optimize

their system for either performance or energy, but provides both metrics so that

the consumers of the results can balance the two factors appropriately depend-

ing on their needs. For similar reasons, an energy efficiency benchmark should

report the performance as well as the efficiency so that users can determine

whether or not the system can deliver the required performance.
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6.2.5 Nameplate Power

Section 2.4 described the difficulties of estimating power consumption of servers

based on their nameplate power ratings. The server used in these tests has a

nameplate rating of 675 watts; however, the maximum average power within

an interval for any worklet in all of these tests was only 342.9 watts. Clearly,

using the nameplate power would have been a poor substitute for measuring the

power consumption, even when looking only at the peak power.

6.3 Quality of the SERT

While the SERT is not intended to be a benchmark, its design goals are consis-

tent with most of the design criteria for energy efficiency benchmarks described

in section 3. It is appropriate, therefore, to evaluate the SERT based on these

criteria. Since the SERT has only been available for a short time, a full eval-

uation is premature, but a preliminary evaluation can be made based on the

results above, as well as the SERT Design Document’s [50] descriptions of the

tool. The quality of SERT should be reevaluated after there has been sufficient

use to assess the quality of the results.

Relevance The SERT contains a suite of worklets, including some designed to

stress CPU, memory, and disk storage. Each worklet is simple, often repeating

a small set of operations on randomly-generated data; therefore, the relevance

in any specific application area is limited, but the SERT does give a broad

overview of the system’s energy efficiency.

Scalability was an important design goal for the SERT. This scalability

is largely achieved through spreading work across multiple JVMs and using

platform-specific affinity commands to pin each JVM to a particular set of pro-

cessors to minimize shared resources. Each client JVM runs multiple threads,
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but there is little interaction among the threads, resulting in low rates of con-

tention. The memory worklets were designed to take advantage of up to 1 TB

of memory. The storage worklets use a separate client JVM for each physical

disk, and is designed to scale to virtually any number of disks contained within

the system enclosure.

A key feature of the SERT is that it runs each type of worklet at multiple

load levels, providing opportunities for systems to reduce power consumption

at low CPU utilizations as well as low memory and disk utilizations.

The SERT run rules have many similarities to SPECpower ssj2008 run rules;

in particular, it includes detailed requirements for acceptable power analyzers

and the system configuration.

Reproducibility Section 6.1.1 discussed the run-to-run consistency of SERT

results. These results show that (at least in this environment) SERT delivers

consistent results in each valid run for both performance and power.

Descriptions of the hardware and software environment used for the SERT

are similar to SPECpower ssj2008, which has proven itself to be sufficient for

reproducing results. The ability to automatically collect certain environmental

details from the system at runtime helps improve the accuracy of this data in

SERT results.

Because SERT launches client JVMs directly and uses automatic heap size

calculations and affinity commands, many details about the client JVM config-

uration are known and can be reported directly without user involvement.

One aspect of the SERT that may prove to be problematic for reproducibility

is the requirement to disable any cache on disk controllers used by the Storage

worklets. Different disk controllers provide different interfaces for configuration

and for detecting whether any cache was disabled, making it difficult for the

SERT to automatically determine whether this requirement has been followed.
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Fairness The SERT was designed and implemented by a SPEC committee

consisting of several server vendors as well as participation by individuals with

no current corporate affiliation. Input was obtained from the US EPA and other

organizations, who in turn collected feedback from other interested parties. A

draft SERT Design Document [50] was published publically early during the

development process, and many aspects of the design were presented to the

research community during development as well [52, 49]. The Beta-2 release

was made available to interested parties and feedback was obtained from these

early users. These actions were taken in order to give ample opportunity for

interested parties to influence the design of the SERT in order to produce a tool

that was a fair measure of server energy efficiency.

Few technical restrictions are placed on the servers that can run the SERT,

though the EPA and other organizations may place their own restrictions on

what results they will accept. The SERT does require a 64-bit platform, a

compliant Java Virtual Machine implementation, and at least one storage de-

vice. The hardware is generally required to be in an “as-shipped” configuration,

limiting the ability for testers to publishing results with “benchmark special”

hardware that would not be used in real-world environments.

Currently, only Windows, Linux, and AIX operating systems are supported.

Support for additional operating systems and hardware platforms may be added

in the future if sufficient testing can be performed to validate these configura-

tions. A small amount of porting effort would be required in order to support

automatic processor affinity and for the storage worklets to run properly.

The SERT application may not be modified or recompiled, and SPEC has

defined a process to restrict the JVM command-line options. The intent of these

restrictions is to avoid favoring particular hardware architectures while limiting

the ability to use super-tuned configurations which are not representative of
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real-world environments.

Verifiability The SERT is predicted to be of much broader interest to sys-

tems vendors than past energy efficiency benchmarks due to its inclusion in

the ENERGY STAR program. This may lead to a greater number of results

obtained by smaller vendors who may not have extensive skills with configur-

ing and running benchmarks. This makes verifiability even more important for

SERT than it is for most benchmarks.

A number of validation checks are performed at the conclusion of each run

in order to ensure that the run rules were followed. While these tests cannot

fully validate compliance with SERT run rules, a result that passes all of the

validity checks is highly likely to be an accurate result. The validity checks

generally cannot, however, confirm that the system configuration was described

properly, or that system tuning was performed in accordance with the SERT

run rules. The raw results files produced by the SERT do include some amount

of automatically discovered system configuration data; while most of this data

is not used to generate the report, a reviewer can use this data to ensure it is

consistent with the manually-reported system configuration details.

The most basic SERT validity checks ensure that a compliant configuration

file was used, and that the results file was not modified after the run was com-

plete (aside from system configuration details which are allowed to be edited).

Other tests confirm that target load levels were met within a suitable tolerance

level, and that there is good consistency in the results from multiple Client

JVMs and among multiple hosts.

Data collected from power analyzers is validated in accordance with the

guidelines established in the SPEC Power and Performance Benchmark Method-

ology [24], using checks very similar to those in SPECpower ssj2008. For exam-

ple, analyzers must be on SPEC’s list of approved analyzers, following a review
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of the technical specifications and testing to confirm that the device meets the

accuracy requirements defined by SPEC. The device is required to have been

calibrated within one year prior to the test. PTDaemon calculates the level

of uncertainty in the measurements according to manufacturer specifications,

and checks are performed to ensure that the uncertainty in the measurements

is within established limits.

While the standard reports produced by SERT show a small amount of

summarized data, the raw results include more extensive details about the en-

vironment. These details can be used to detect any inconsistencies; a lack of

inconsistencies in this data gives additional credibility to the results.

Usability The SERT is a complex suite of workloads, but SPEC has taken

several steps to make it as easy to run as possible. Feedback from Beta-2

users has been incorporated into the final release to resolve common challenges

through changes to the behavior, improved error handling, and more detailed

documentation. Additional improvements to usability are likely to be made in

future updates.

The graphical user interface provides a simpler way for both new and expe-

rienced users to run the tool. It guides the user through a sequence of steps to

ensure that the configuration is correct before beginning the run. It can auto-

matically launch the SERT Director and SPEC PTDaemon instances; the user

must start a SERT Host process on the system under test, but this requires

very little configuration, and the Host can be reused in multiple test runs. For

advanced users, the SERT can also be launched manually via the command-line.

Validity checks give the user confidence that their runs are configured prop-

erly and meeting the run rules established by SPEC.

Power consumption is measured using an external power analyzer commu-

nicating with SPEC PTDaemon. Once the connection to PTDaemon is estab-
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lished, Chauffeur ensures that measurements are started and stopped at the

proper times.

A common challenge in collecting accurate data from a power analyzer is

ensuring that the analyzer is set to an appropriate range. If the measured

values are outside of this range, the analyzer may not be able to measure them

at the level accuracy required by SERT. Manually setting ranges can be quite

difficult with SERT, since the correct range can change for each load level, and

different worklets may require different range settings. To simplify this process,

the SERT includes a procedure for doing an abbreviated run which can be used

to detect the proper range settings for each interval in each worklet. The result

of this procedure is a group of settings that should be used for the full runs.

While this procedure may not work perfectly in all environments, it appears to

work well for most systems and requires little knowledge or effort from the user.

7 Future Work

The initial development of Chauffeur has been focused on meeting the needs

of SERT. Run rules for SERT intentionally limit flexibility in how SERT and

Chauffeur are used for compliant results; this is necessary for meeting the goals

for SERT of giving a broad measure of server efficiency with minimal tuning.

However, this paper describes the potential for utilizing Chauffeur-based work-

loads for future research.

Obvious extensions to Chauffeur which have already been mentioned include

the introduction of new worklets (including worklets not written in Java) and

new Listeners to automatically collect additional data during a run.

Ease of use is another area for additional improvement. For users, selecting

the correct tuning options for their configuration can be a challenge; additional

enhancements to Chauffeur and SERT can help with selecting appropriate op-
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tions automatically. For researchers, additional documentation is needed to

provide information about how Chauffeur can be adapted to their needs.

Other future enhancements could include improved support for heteroge-

neous workloads. This could include a “commingled” worklet that mixes CPU,

memory, and storage transactions running concurrently. Alternatively, each

client JVM on a system could run a different set of transactions, or a different

sequence of load levels. This could be extended to multi-system environments

by running different transactions or sequences of load levels on different hosts;

this could be of particular interest for emulating a virtualization consolidation

environment where multiple virtual machines are running on the same host,

each running independently.

The SERT runs an orderly sequence of load levels in order to maximize

consistency, but real applications tend to be more dynamic. Chauffeur could

be used to study these environments by using a more random sequence of load

levels with more frequent changes. This could be useful in assessing the impact

of power management technologies on performance and power consumption in

dynamic environments. The sequence of load levels could be modeled after

utilization information from production systems.

Chauffeur currently focuses on application throughput, but supplies minimal

information about response time. Maintaining adequate application response

time can be an important factor for power management technologies. Future

Chauffeur enhancements could verify that transactions meet some threshold for

quality of service, particularly at low utilizations when power management may

hurt response time.
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8 Conclusion

Energy efficiency has become a significant concern for servers. Over the past

few years, several energy efficiency benchmarks have been released. These are

intended both to drive product improvements and to enable fair comparisons

between servers. While these benchmarks have been a good start, additional

benchmarks are needed to overcome some of the limitations of the earlier at-

tempts and provide workloads that mimic the behavior of real environments.

Like all benchmarks, energy efficiency benchmarks need to be relevant, re-

producible, fair, verifiable, and easy to use. In order to meet these goals, energy

efficiency benchmarks in particular should measure power consumption at mul-

tiple utilizations, and use multiple workloads to exercise a variety of behavior.

Support for multiple systems allows energy benchmarks to produce meaningful

results for systems with shared power and cooling infrastructure. Power mea-

surements should be obtained automatically from a power analyzer capable of

producing results with sufficient accuracy. Complete and accurate descriptions

of the system hardware and software configuration are critical for reproducibil-

ity. Due to the inherent complexity of collecting power data, ease of use features

are important to allow users to collect the data accurately and with as little ef-

fort as possible.

SPEC has developed the SERT as its next-generation tool for evaluating

energy efficiency. While SERT is not intended to be a benchmark, it does

provide valuable data regarding the energy efficiency of a server. The Chauffeur

framework was designed to help SERT and future benchmarks to meet the design

criteria for energy efficiency benchmarks. Chauffeur implements functionality

common to most benchmarks and includes a variety of features intended to

simplify collection of meaningful energy data.

Early SERT results show that it produces consistent results, and demon-
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strate the necessity of measuring multiple workloads at multiple utilizations.

Further experiments demonstrate the impact of system tuning on energy effi-

ciency, and show the influence that default tuning options can have on energy

consumption in customer environments.

While the SERT is a significant improvement in the ability to measure en-

ergy efficiency, it will certainly not be the last tool or benchmark to do so.

Future benchmarks are still needed to provide more relevant results for specific

usage patterns and more balanced usage of system components. Additional

benchmarks can also provide energy efficiency data for specialized areas such as

virtualization. Chauffeur provides a solid foundation that these future bench-

marks can take advantage of.
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