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Abstract

The data layout of a program is critical to perfor-
mance because it determines the spatial locality of
the data access. Most quantitative notions of spa-
tial locality are based on the overall miss rate and
leave three questions not fully answered: how much
can the locality of a given data layout be improved,
can a data layout be improved if the miss rate can-
not be lowered, and can the overall spatial locality
be decomposed into finer components? This paper
describes a new definition of spatial locality that ad-
dresses these questions. The model is based on on-
line profiling and off-line analysis. It has been used
to analyze 7 SPEC2000 benchmarks and 1 SPEC2006
benchmarks. Among their 18 components, it finds 5
components that have a significant problem of poor
spatial locality.

1 Introduction

Caching and prefetching are the two most effective
ways for hardware to improve memory performance.
Both depend critically on the layout of the program
data—whether the program has good spatial locality.
Most quantitative notions of spatial locality are based
on the miss rate—whether a new data layout leads to
a fewer number of cache misses. The miss rate, how-
ever, is not enough to fully understand this important
concept from the perspective of the software.

First, the miss rate is the overall effect from all
computations and data. It does not show whether a
program has different locality among its components.
For example, different pieces of data may have differ-
ent locality, or the same piece of data may have differ-
ent locality when accessed by different parts of com-
putation. While powerful compiler techniques have
been developed to identify these components for reg-
ular scientific code, the miss rate is still widely used
for programs not amenable to compiler analysis such
as those with input-dependent control flows and in-
direct data accesses.

Second, it is uncertain whether the miss rate can
be reduced without trying other choices. Changing
the data layout for large, complex code is time con-
suming and error prone. Yet the effort is inconclu-
sive at best. It may fail to change the miss rate,
then the effort is wasted. If it leads to an improve-
ment, it is still unclear whether more improvements
are possible. In both cases, the programmer, after
much labor, returns to the starting point facing the
same uncertainty. Many studies found that a tech-
nique improved some programs but not some others.
There is no general test to show whether the lack of
improvement in a program is due to the limitation of
the technique or the lack of room for improvement.

Third and last, when prefetching is considered, the
quality of two data layouts may differ even though
they incur the same number of cache misses. A
concrete example was described by White et al. in
2005 [39]. They studied the effect of data layout
transformations in a large (282 files and 68,000 lines
C++), highly tuned and hand optimized mesh library
used in the Lawrence Livermore National Lab. A
data packing transformation, consecutive packing [8],
placed the data objects based on the order of their
access. Since mesh entities were too large for spa-
tial reuse within a cache block, the transformation
did not reduce the number of (L1/L2) cache misses.
However, it produced a sequence of addresses more
amenable to stream prefetching, so it increased the
number of useful prefetches by 30% and reduced the
load latency from 3.2 cycles to 2.8 cycles (a 7% over-
all performance gain), as measured using hardware
counters on an IBM Power3 machine [39].

In addition, White et al. found that two
other transformations, iteration blocking and regis-
ter tiling [25], although reducing the number of loads
and branches by 20% and 9%, resulted in a higher
load latency of 4.4 cycles because they interfered with
hardware prefetching. Because of prefetching, not all
cache misses are equal. Those misses that are in-
curred on consecutive memory blocks are less costly
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because the data can be more effectively prefetched
by hardware or software.

In this paper, we redefine spatial locality based on
the distance of data reuse. In particular, it examines
the change of reuse distance for different block sizes.
When the data block size is the same as the cache
block size, the spatial locality will measure the uti-
lization of cache blocks. When data blocks are larger
than cache blocks, the spatial locality will reflect the
effect of consecutive hardware prefetching. The new
model is based on components, which are groups of
memory accesses that have similar reuse distances.
We will use the new model in conjunction with met-
rics of the temporal locality and component size to
identify components that are likely to have a problem
of poor spatial locality.

Spatial locality was first modeled using the notion
of working set [2]. Recently, Weinberg et al. de-
fined a spatial locality score by varying the size of
“look back” windows in time [38]. The model here
is defined by varying the size of data blocks in mem-
ory, and it has finer granularity than the score of
the whole-program. As we will show through ex-
periments on a wide range of benchmarks, most of
their components do not have a serious problem of
spatial locality, but some non-trivial components do.
The new model can be used to automatically identify
these components and measure the specific effect of
a program transformation. For example in swim, an
improvement to the spatial locality of 7.3% memory
references leads to 10% and 14% overall performance
gain on two modern machines.

The model uses only program-level metrics and
does not model machine-dependent factors. For ex-
ample, it predicts whether a data layout would bene-
fit more than another from prefetching but it does not
predict the performance difference on a specific ma-
chine. It assumes a fixed computation order, so the
spatial locality is determined entirely by the data lay-
out. The analysis is based on the postmortem study
of execution traces, which has two limitations. First,
the components we identify are groups of memory ac-
cesses in a trace. They are not components in code or
data. Correlating between locality and program com-
ponents remains our future work. The other problem
is that the trace changes when a program takes a dif-
ferent input. In this work, we measure the spatial
locality of multiple inputs to examine whether and
how the high-level locality metrics change with the
input.

2 Background

The reuse distance of a memory access is the number
of distinct data elements accessed between this and
the previous access to the same data. For example
for the data access trace in Figure 1(a), the reuse dis-
tance of the second access of b is 2 because 2 distinct
data elements appeared between this and the first
access of b. The distribution of all reuse distances in
the trace is called the reuse signature, shown in Fig-
ure 1(b). Reuse distance is the same as LRU stack
distance defined by Mattson et al. in 1970 [23].
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(a) reuse distances of
a data access trace (b) the reuse signature

Figure 1: Example reuse distances and their reuse
signature

While the reuse signature is purely a software mea-
sure, it can be used to calculate the miss rate on a
machine. In fully associative LRU cache, a memory
access misses in cache if and only if its reuse distance
is equal to or greater than the cache capacity (hence
the name LRU stack distance). The effect of direct
mapped and set associative caches can be estimated
based on a set of probability equations by Smith in
1976 [32]. It is based on the assumption that a reuse
has an equal probability finding the previous copy in
any one of the cache sets. Past studies found it quite
accurate [22,32]. Algorithms and tools for direct sim-
ulation of set-associative cache also exist [17,34].

3 A Component-based Definition of

Spatial Locality

Spatial locality measures the quality of data layout
for a given cache block size or larger data block sizes
when prefetching is considered. It measures how lo-
cality changes as a function of the data block size. In
particular, we define spatial locality as the change in
reuse distance when the data block size changes from
b1 to twice the size b2 = 2b1.

Spatial reuse may shorten a reuse distance in two
ways. Suppose data x, y of size b belong to the same
2b block, and the reuse distance happens between two
accesses of x. If y is not accessed in between, the reuse
distance may be shortened as the number of 2b size
blocks may be less than the number of b size blocks.
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If y is accessed in between, the reuse distance is defi-
nitely shortened since the reuse is “intercepted”. The
one reuse pair becomes two reuse pairs, and the latter
pairs give the new reuse distance measured in 2b size
blocks.

The example in Figure 2 shows an example of an
intercept due to spatial reuse. Suppose each element
of array d is of size b. When the block size doubles
from b to 2b, the reuse distance between two accesses
of d[1] is changed from a temporal reuse to a spatial
reuse between the second d[1] access and the inter-
vening d[2] access.

d[1] ...  d[2] ... d[1]

d[1:2]...d[1:2]...d[1:2]

the trace when the block size is b:

the trace when the block size is 2b: 

original temoral reuse

spatial reuse

Figure 2: An example effect of spatial reuse

The shorter the new reuse distance compared to
the original distance, the better the spatial locality,
because it leads to fewer cache misses. In practice,
the spatial reuse needs to reduce the length of reuse
distance significantly to make a difference. In the ab-
sence of intercepts, a reuse distance can be shortened
by at most a factor of two. Any larger reduction must
come from intercepts. In Figure 2, the reduction de-
pends on how close the access of d[2] to the second
access of d[1].

We compute the effect of spatial locality for each
bin. Here we use superscripts to represent the size of
data blocks and subscripts to represent the index of
the bin, so the size of ith bin when block size is b is
represented as sb

i
. We partition the reuse distances

of sb

i
into two portions effective spatial reuse and in-

effective spatial reuse with percentages αb

i
and βb

i

(αb

i
+ βb

i
= 1) respectively. Effective spatial reuse in-

cludes reuse distances whose bins have been changed
by a threshold factor, which is 3 in our experiments.
Effectively it is an order of magnitude reduction in
reuse distance. The remaining ones are considered
ineffective spatial reuse.

To precisely measure αb

i
and βb

i
, we need to know

how the reuse distance is changed by doubling the
block size. For implementation we augment a basic
reuse distance analyzer [9] by running two analyzers
in parallel for two block sizes. For each memory ac-
cess, the analyzer computes the reuse distance for the
two block sizes and based on the difference, it clas-
sifies the access as having effective or ineffective spa-
tial reuse. The original analyzer stores the sub-trace

containing the last access of each block. The new an-
alyzer stores two sub-traces, one for each block size.
With the algorithm of compression tree [9], the space
cost of each sub-trace is logarithmic to the data size,
so twice the cost is not much higher than before.

We normalize the ratio of effective spatial reuse to a
number between 0 and 1. We consider sequential ac-
cess as the best case for spatial reuse. In that case, α

equals to 0.5 since half of the reuse distances become
0. The data layout quality score SLQ is measured by
how the actual reduction compares with the best-case
reduction.

SLQ(sb

i
) =

αb

i

0.5
= 2αb

i
. (1)

Finally we define a component as data reuses of
nearby bins that have a similar portion of effective
spatial reuse. In this study we will manually ex-
amine the score for all bins and group them into
components. In the future, we will consider using
pre-defined ranges based on cache sizes, although the
group composition will depend on the input of a pro-
gram (if its reuse distance changes with the input).

4 Experimental Results

We have tested our model on seven programs
from SPEC2000 [33] and one program from
SPEC2006 [33]. The basic information about these
benchmarks are given in Table 1. First are three
floating-point benchmarks followed by four integer
benchmarks come from SPEC2000. The last is a
floating-point benchmark from CPU2006. To mea-
sure the effect of different inputs, we have collected
results for all reference inputs of these programs. We
also test two synthetic cases. All of the C programs
are compiled using “gcc -O3”, and the Fortran pro-
grams using “f95 -O5” using the GNU compiler (ver-
sion 4.1.2). The 14 executions shown in Table 1 have
different characteristics. The data size ranges from
1.2MB to 72MB, and the trace length, measured by
the number of memory accesses, ranges from 7.7 bil-
lion to 400 billion.

We use the dynamic binary instrumentor Valgrind
(version 3.2.2) [27] to collect the data access trace and
measure the reuse distance using the tool described
in Section 3. It measures reuse distance in near lin-
ear time with a guaranteed precision, which we set
to be 99.9%. The cost of instrumentation and reuse
distance analysis is up to several hundred times slow-
down. For example, it takes 100 hours to analyze the
400 billion memory accesses of an Milc run, which
takes less than 19 minutes without instrumentation.
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programs inputs data size (bytes) trace length

equake ref <inp.in 5.0e+07 5.9e+10
art ref1 -scanfile c756hel.in 3.7e+06 1.1e+10

-trainfile1 a10.img
-trainfile2 hc.img
-stride 2 -startx
110 -starty 200 -endx
160 -endy 240
-objects 10

art ref2 -scanfile c756hel.in 3.7+06 1.2e+10
-trainfile1 a10.img
-trainfile2 hc.img
-stride 2 -startx 470
-starty 140 -endx 520
-endy 180 -objects 10

swim ref < swim.in 2.0e+08 9.2e+10
swim.opt ref < swim.in 2.0e+08 9.2e+10
gzip ref1 input.source 60 4.2e+07 1.5e+10
gzip ref2 input.log 60 3.9e+07 7.7e+9
gzip ref3 input.graphic 60 6.5e+07 2.4e+10
gzip ref4 input.random 60 7.4e+07 1.9e+10
gzip ref5 input.program 60 5.2e+07 2.6e+10
mcf ref inp.in 8.0e+07 1.8e+10
crafty ref < crafty.in 1.3e+06 5.0e+10
twolf ref ref 1.1e+06 1.1e+11
milc ref < su3imp.in 7.2e+08 4.0e+11

Table 1: The size of the 14 executions of 8 bench-
marks

In the following analysis, we just focus on the com-
ponents whose reuse distance are larger than 31, since
now even the register set of a modern machine are
larger than 31. We also cut off those components
who contain less than 0.1% of memory accesses, con-
sidering them insignificant in program performance.

4.1 Spatial Locality of Synthetic Traces

We test sequential and random data traversal. As
expected, in the reuse distance histogram from se-
quential access, the size of each long-distance bin is
halved as the data block size is doubled, showing the
best case spatial reuse (spatial locality quality score
is 1). In contrast, in the histogram from random ac-
cess, the spatial locality quality score is less than 0.13
for most block sizes.

4.2 A Case Study: Swim

Swim is a floating-point benchmark program from
SPEC2000. It simulates shallow water using a two-
dimensional grid, represented by a set of 14 arrays.
We use two versions—the original version and the
version after array regrouping, which is supposed to
improve the spatial locality [30,43].

Figure 3 shows the spatial locality score for both
versions with 64-byte or 128-byte cache line. The
score is show by the y-axis, and the reuse distance
bin (equal or greater than 8) by the x-axis. The score
for each bin is marked by a cross for the original ver-
sion and by a downward triangle for the transformed

version. The size of the bin is show by the size of the
circle enclosing the mark.

With 64-byte cache line in both versions there are
three bins (≥ 10) of a significant size: bin 12, 21 and
22. The spatial locality of the latter two bins is iden-
tical in two versions, shown by their perfect overlap.
The spatial locality score of the first bin, which ac-
counts for 4.6% or 3.1% of all memory accesses repec-
tively in both versions, has been improved from 0.16
to more than 0.99. Our previous work shows that
array regrouping improved the performance by 14%
on IBM Power4 [30]. For this study, we compared
Gcc-compiled 64-bit binaries on 3.2GHz Intel Xeon
and observed 8.1% performance improvement. With
the new spatial locality model, we now see that the
improvement is caused by the better spatial locality
for the about 4% memory references.

On the specific machine we tested with 64-byte
cache line, the L1 cache size is 32K and L2 cache
size is 1M. Let’s assume fully-associative cache with
cache block size 64, the predicted cache miss rates of
the original swim benchmark are 10.4% and 5.33%.
The cache miss rates for the optimized version are
9.7% and 5.33%. So the performance improvement
mainly benefits from the lower L1 cache miss rate.
However, we should notice that a reduction of 6.7%
L1 cache miss rate can not explain the 8.1% perfor-
mance improvement. In fact, as our spatial locality
model predicts, the optimized version benefits from
prefetching.

With 128-byte cache line, the two versions show
more distinctive difference. The bin 12 in original
program has no spatial locality, which accounts for
4.1% of all memory accesses. After array regrouping,
this component is partly moved to bin 11 with spa-
tial locality score 0.59. It means doubling block size
may improve temporal locality and spatial locality
together.

The program Swim demonstrates two unique fea-
tures of the model. First, the model is based on com-
ponents, so it can reveal different locality patterns
within the same application, if different components
are separated in their reuse distance. Second, the
model is based on different data block sizes. It shows
that the spatial locality of the same component may
change significantly depending on the size of the data
block.

4.3 All Benchmark Results

Our analysis has identified 18 components in the 14
executions of the 8 programs, including the two com-
ponents (on the reuse histogram) for each run of the
4 programs, equake, mcf, swim and swim.opt, and
one for each of the other 10 executions. Figure 4 and
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Figure 3: Spatial Locality Score Comparison of Swim: Original Program vs. Program after Array Regrouping
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Figure 5 show three attributes of the spatial locality
components: the spatial locality score, the temporal
reuse distance and the size. All are for the block size
of 64 bytes. For each component, we consider the
weighted average of temporal reuse distance and spa-
tial locality score. In the names of components, we
use ‘c’ for multiple components in a single input and
‘r’ for multiple inputs with the same program. For ex-
ample, swim-c2 is the second component of the swim

execution, and gzip-r3 is the (only) component of the
third input of gzip.

The x-axis of Figure 4 shows the weighted average
reuse distance of each component. The range of the
reuse distance differs from component to component
and program to program. But different inputs of the
same program show similar reuse distance as those
of gzip and art. The x-axis of Figure 5 shows the
sizes of the components as the percentage of the total
references in a run.

Based on the summarized results, we classify the
locality of the 18 components of the 7 SPEC bench-
mark programs in four categories.

Components with good temporal locality The
components crafty and equake-c1 (11% of 18) have
good temporal locality because they have short reuse
distances (shorter than 256 blocks or 16KB)

Components with good spatial locality The
following 6 components (33% of 18), equake-c2,

mcf-c2, milc, swim-c2, swim.opt-c1 and swim.opt-

c2, have good spatial locality for because all long-
distance components have almost perfect spatial lo-
cality (a score greater than 0.78).

Executions with poor spatial locality A com-
ponent has a serious spatial locality problem if it
meets the following three conditions.

• The component has a significant size,

• It has long reuse distances (poor temporal local-
ity), and

• It has low spatial quality score (poor spatial lo-
cality).

Five components (28% of 18), art-r1, art-r2, mcf-

c1, swim-c1 and twolf meet these conditions. They
contain between 5.13% to 44.4% references. Their
reuse distance ranges from 64KB to 2MB. Their spa-
tial locality score is between 0.250 and 0.657. Art

has identical components in two inputs, suggesting a
good chance for compiler optimization.

Components with possible spatial locality

problems Five components (28% of 18) of gzip

with different input have the low spatial locality
scores of 0.140 and 0.387. However, these component
has relatively short reuse distances. While their sizes
are from 5.82% to 21.5% of their references respec-
tively, almost entire of them have the reuse distance
less than 8K blocks or half mega-bytes, which fits in
the level-two cache of most modern machines.

Other data block sizes The preceding results are
for a single data block size, but they help us to fo-
cus on 10 out of the 18 components. We pick up 5
components and show them in Table 2 for block sizes
from 16 to 128. The spatial and temporal locality are
shown in term of their weighted average.

component reuse spatial size (%)
distance locality
16-byte blocks

art-r2 16 0.21 62.18
gzip-r4 12 0.25 10.81
mcf-c1 16 0.32 63.76
swim-c1 13 0.7 7.33
twolf 13 0.44 29.9

32-byte blocks
art-r2 15 0.4 55.54
gzip-r4 11 0.18 8.97
mcf-c1 16 0.55 55.7
swim-c1 12 0.44 5.86
twolf 13 0.39 20.7

64-byte blocks
art-r2 14 0.66 44.44
gzip-r4 10 0.14 6.8
mcf-c1 15 0.39 40.63
swim-c1 11 0.25 5.13
twolf 12 0.33 14.24

128-byte blocks
art-r2 13 0.74 29.84
gzip-r4 9 0.11 5.82
mcf-c1 14 0.56 33.63
swim-c1 11 0.13 4.76
twolf 11 0.29 10.32

Table 2: The spatial locality of 5 components for 4
data block sizes

The results show that the reuse distances of these
components decreases by one when the cache block
size is doubled. The component size decreases only
slightly and far less than a 50% reduction. Conse-
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quently, the spatial locality score of these components
remains low for different block sizes. This indicates
that our spatial locality quality score is consistent for
different block sizes.

Different inputs Table 3 compares the two com-
ponents of swim with ref and train dataset as input.
With a smaller input, the reuse distance of both com-
ponents decreases. However, the spatial locality and
size of both components do not change much. Similar
conclusion can be drawn from the other benchmarks
such as art and gzip. The spatial locality analysis
can correctly identify the components and their spa-
tial locality score, independent of the program’s in-
put. However, we do need an input larger enough to
differentiate different components.

component spatial size (%)
locality

ref input
swim-c1 0.25 5.1
swim-c2 1 5.2

train input
swim-c1 0.25 5.1
swim-c2 0.98 5.3

Table 3: Components of Swim for ref and train input

5 Possible Uses

User tuning Locality tuning is different from com-
putation tuning. For example pipeline stalls can be
addressed by reorganizing the code where the stalls
happen. However, to remove cache misses one often
needs to group data accesses from remote parts of
a program. While commercial tools identify the fre-
quency and location of cache misses, they do not iden-
tify program-level causes and solutions. For example,
an Intel article on VTune explains memory tuning
by showing data blocking in two example loops but
does not explain how to handle other programs [19].
HPCView shows global data reuse, identifies data
that cause cache conflicts, but it does not report on
the degree of cache block reuse or the effect of hard-
ware prefetching [18].

With the new metric, a profiling tool can identify
data structures that exhibit poor spatial locality dur-
ing some of the uses. It can identify where the data
structure is defined, the data allocated and accessed.
It is important to distinguish different access patterns
because the same data may have excellent spatial lo-
cality in one part of a program but not in another
part.

5.1 Superpage Management

On modern machines, the cost of TLB misses is a
significant overhead, and the cost is expected to rise
sharply as applications move to 64-bit address space.
The idea of superpages was proposed in early 1990s
to support large working sets by letting a program
use pages up to tens of megabytes in size. Early
studies explored basic allocation schemes (based on
reservation [35] or relocation [29]) and special hard-
ware support of non-continuous superpages [12, 35].
Restricted uses have been included in modern pro-
cessors from IBM, Intel, and Sun and in operating
systems including Linux, AIX, and Solaris.

Previous studies managed program code, heap, and
stack separately but the same policy is applied within
each category. The new metric may help to refine the
management of heap data, dividing them based on
their usage. In particular, it can be used to determine
the best superpage size. As the component quality
varies among data regions, so do the benefit and the
cost of making a superpage. An off-line analysis can
examine the tradeoffs between the TLB miss reduc-
tion and the memory increase for fine-grained data
regions and then develop new heuristics so that the
available physical memory can be used to make the
most gain. This will augment the previously devel-
oped systems, which assumed enough physical mem-
ory in their experiments [5, 26].

5.2 Data-based Cache Hints

One of the new extensions in computer architecture,
in particular on IBM Power 5 and Intel Itanium pro-
cessors, are cache hints. For a memory instruction,
the hint indicates whether the loaded cache block
should be kept in a level of cache or be replaced to
make room for later data. It allows software-steered
cache management on a real machine. Beyls and
D’Hollander used reuse distance-based models to in-
sert cache hints and obtained 9% performance im-
provement on average on Itanium for a set of inte-
ger and floating-point benchmarks. The results com-
pared favorably with a set-based analysis in the com-
piler they developed [1]. One limitation of profiling-
based analysis is that the behavior of a program may
change in the actual execution. Fang et al. gave
a solution, which constructed a model from multi-
ple training runs and used the model to predict the
change of reuse distance in other runs [11]. Empiri-
cally, they found over 90% accuracy on average for
the per-instruction miss rate for both integer and
floating-point Spec2k benchmarks for both fully and
set (one-way and up) associative cache.

8



During an execution, a load instruction may access
data with different locality, so the best cache hint
may change at different times. Since the new metric
can identify different patterns for different data at
different parts of a program, it may be used for data-
based cache hint insertion.

6 Related Work

Spatial locality was first modeled using the notion of
working set. Bunt and Murphy considered the spa-
tial locality in two ways [2]. By examining different
page sizes, the first model quantified the change in
the reuse signature in terms of its fit to a Bradford-
Zipf distribution. The second model measured the
frequency when a group of h pages were accessed by
n consecutive times. The locality increased with h,
and the smaller the working set, the faster the local-
ity increased. Somewhat similar to the first model,
many studies have examined the effect of different
page sizes and cache block sizes. Recently, Weinberg
et al. defined a spatial locality score, which is based
on the closeness of data elements accessed in each
time window of size w [38]. It is a combination of the
working set and the spatial distance.

Like the spatial locality score, the quality here
ranges between 0 and 1 with 0 being the worst lo-
cality and 1 being the best. Unlike previous studies,
the locality here is defined on components rather than
the whole program. The model is based on the reuse
distance rather than time windows.

Ding and Zhong used a similar component-based
analysis for predicting the change of whole-program
locality across data inputs. They divided all data ac-
cesses of a program into a fixed number of bins and
modeled the pattern in each part by examining the
reuse signature from two different runs [9]. Shen et
al. improved their method by allowing mixed pat-
tern inside each bin and by using linear regression on
more than two inputs [31]. They reported an average
accuracy of over 94% when predicting the (change
in) reuse signature in a new input. The technique
was later used to predict the cache miss rate across
program inputs [42]. Marin and Mellor-Crummey
gave an adaptive method based on recursive division
for partitioning the data accesses of a program [21].
They augmented the model to predict not just the
miss rate but program performance and to consider
non-fully associative cache [22, 32]. Fang et al. im-
proved the precision of the method of Ding and Zhong
by using a linear distribution (rather than a uniform
distribution) inside each bin (for more on this study
see Section 5.2) [11].

While these studies developed parameterized mod-
els for different access patterns, the goal was to bet-
ter model their combined effect rather than to study
them individually. They did not distinguish between
temporal and spatial locality.

Dependence analysis analyzes data reuses in loop
nests and can estimate the number of capacity misses
in scientific programs [6,10,14,28]. Other researchers
used various types of array sections to measure data
access in loops and procedures [3, 4, 16, 20, 36]. Wolf
and Lam [40] and McKinley et al. [24] used notions of
self and group reuse to distinguish between temporal
and spatial reuse in a loop body. One limitation of
dependence analysis is that it does not model cache
interference caused by the data layout. An early tech-
nique used efficient heuristics [13]. Recent studies
used precise (though worst-case super-exponential)
methods [1,7,15] or their fast approximation through
sampling [37, 41]. These methods are more power-
ful but they are limited to programs written in loop
nests with regular array subscripts. Past profiling-
based techniques can measure the miss rate for gen-
eral program executions, but they do not predict how
locality changes with program inputs (for examples
see [17,23,32]).

7 Summary

In this paper, we have built a quantitative model
of spatial locality. The new model considers both
caching and prefetching. It is hardware and input in-
dependent. The new model can reveal different local-
ity pattern within the same application, which we call
components. We have tested our model on 8 SPEC
benchmark programs. Among their 18 components,
2 of them have good temporal locality, 6 of them have
good spatial locality. Four programs contain signif-
icant components of poor spatial locality, and one
program maybe have spatial locality problems. The
new model may have uses in user performance tuning,
superpage management, and cache hint insertion.
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