
> Characterization of SPECpower_ssj2008) <

Page 1 of 11

1

Abstract— SPEC** recently released
SPECpower_ssj2008, the first industry
benchmark to measure performance and power
of volume server class computers using
graduated load levels. In this paper, we present
a brief overview and an initial characterization of
SPECpower_ssj2008 by measuring the utilization
of system resources with the aid of processor
monitoring events, at graduated load levels and
by comparing the sensitivity of final metric and
other related data between various
configurations consisting of hardware changes as
well as software changes on Intel® Xeon®
processor based servers. Even though this is
early data is from a specific platform and
operating system, it does validate many expected
behaviors and patterns opening exciting new
opportunities for researchers to investigate
specific areas as well as in-depth
characterization as a next step.

Index Terms— SPEC, SPECpower,
SPECpower_ssj2008, performance to power
ratio, Graduated load levels, overall
ssj_ops/watt, energy efficiency, volume class
Servers.

I. INTRODUCTION

December of 2007 brought a significant
milestone for SPEC, the Standard Performance
Evaluation Corporation, with the release of the
industry’s first benchmark to measure the
power and performance of volume server
platforms with an innovative graduated
workload.

Formally named SPECpower_ssj2008, this new
benchmark measures eleven levels of server
loads from zero to 100% of a given platform’s
full capacity to process business transactions
with a server side Java application. Full
disclosure reports using this benchmark
provide an unprecedented amount of new
information on the power consumption and
performance of the tested platform.

In this paper we strive to provide some insights
into workload behavior and server resource
utilization characteristics of this benchmark
above and beyond the wealth of information
included in the now available SPEC provided
documentation cataloged on the SPEC public
website[1][2].

The authors have been active members of the
SPECpower benchmark development team from
the outset and therefore are capable of
providing valuable insights on the workload,
the rationale for design decisions, and the
strengths and inevitable weaknesses inherent
in any such product. We share this information
to enhance the understanding of the
benchmark and its intended usage. Our intent
is that others will benefit and therefore be
more interested in using the benchmark as an
evaluation tool across the wide array of studies
to which it can apply.

Fig 1 – Elements of the SPECpower Framework

A. A little History

The SPECpower committee was chartered in
January of 2006 to create a benchmark that
would address the emerging need to measure
power consumption and performance of server
class computer systems under application-like
loads. The intersection of performance and
power has become an important attribute of
computer systems, sometimes labeled
efficiency. A standard method of measuring
and reporting both would require a disciplined
approach beyond what was then available on
the open market.

Characterization of SPECpower_ssj2008** benchmark

Larry D Gray, Anil Kumar and Harry H Li, Intel Corporation

“Any” OS
“Any” OS

ssj_2008
instance(s)
ssj_2008
instance(s)

ssj_2008
director

Power
Analyzer

Linux, Solaris*,
Windows*

Linux, Solaris*,
Windows*

AC Power
Source

Control &
Collect

AC Power

CCS
Control & Collection System

SUT
System Under Test

PTDPTD

Temperature
Sensor

PTDPTD

Intel
Daemon

OSctrD

ccs-log.csv

> Characterization of SPECpower_ssj2008) <

Page 2 of 11

2

The fact that one workload or benchmark could
not represent the spectrum of server usage
was generally accepted and therefore the
SPECpower committee was determined to
create more than one “benchmark” in more
than one application segment.

The committee is and was staffed by engineers
and managers from these companies: AMD*,
Dell*, Fujitsu Siemens Computers*, HP*, IBM*,
Intel*, and Sun Microsystems*. The
manufacturers were assisted by
representatives from academia including the
University of California Berkeley, Virginia
Polytechnic Institute and State University, and
Lawrence Berkeley National Laboratory.

After two years of constant collaboration,
design, coding and extensive testing efforts,
the SPECpower committee released [13] its
first benchmark named SPECpower_ssj2008 on
December 11, 2007 to very positive reviews
from industry and trade press.

II. SPECPOWER_SSJ2008 OVERVIEW

A. Measuring Power with Performance

This section provides a brief overview of the
SPECpower measurement framework described
in more detail in the set of documents freely
available at the SPEC public web site on the
SPECpower_ssj2008page[2][3][4][5][6][8][9].

For deeper understanding of the design of the
benchmark and its essential elements, refer
first the to the “SPEC Power and Performance
Design Overview” [8][9][10][11][12].

Several challenges are presented by the
requirement to measure power consumption
with performance, in particular at multiple load
levels.

A “measurement methodology” was established
and then realized by implementing a
measurement framework that requires a
separate platform to which power and
temperature measurement devices are
attached, with the necessary logging and
reporting functions.

The two systems required are the system
under test (SUT) and the Control and Collection
System (CCS)[9]. Communications between
the two systems is enabled by a standard
ethernet local area network (LAN).

The addition of a “measurement server”
enables a host of benefits that include but are
not limited to:

• independence from the workload to enable
quick integration of new workloads,

• multiples measurements; the ability to
manage a number of SUTs and multiple
measurement devices.
multiple JVM instances are also supported.

• low impact to the loads on the SUT for data
consolidation and logging

Altogether, the design permits extending the
framework from the current capability to
measure a stand-alone server with a single OS,
to environments or topologies with multiple OS
images, for instance blade servers and
virtualized servers, with workloads appropriate
to those environments.

B. The Measurement Framework

To better understand the terminology and
characterization data later in this paper, a brief
overview of the SPECpower framework
software elements is provided. Figure 1 is a
graphic representation of the framework with
the interconnections.

On the left side of Figure 1, is the Control and
Collect system (or measurement server). On
the right is the SUT where the workload runs.
The “up arrow” on the right, under the SUT,
points to a non-standard element (not provided
by SPEC), the OS counters daemon (OSctrD).
Created by Intel, this software implements the
capability to collect resource utilization data
from a Windows OS platform, passing a
configurable set of counter data to the CCS for
logging, second by second, along side the
power, performance and other essential data
items. It is this additional element of the
framework that enables producing the data
shown later in this report.

The ssj_2008 workload runs on a SUT plugged
into a power analyzer plugged into the
building’s power infrastructure, measuring
power of the entire SUT platform. This is
sometimes described as “watts at the wall”.

The power analyzer is connected to the CCS
machine via a data cable where purpose built
software, the PTD (Power and Temperature
Daemon) records electrical activity from a
power analyzer, and ambient temperature from
a temperature sensor device placed at the air

> Characterization of SPECpower_ssj2008) <

Page 3 of 11

3

in-flow to the SUT.

The SPECpower_ssj2008 workload uses TCP/IP
protocol to pass time, performance and status
data to the CCS system which then
consolidates that with power and temperature,
and in this case the OS counters, logging all
together into one record in a comma separated
file.

C. A Graduated Workload

The notion of a graduated workload was
inspired by the advent of processor power
management technologies on volume server
platforms, which are most effective at low
loads and usually required to operate without a
negative performance impact.

All this is driven by the global need to conserve
energy, reduce carbon footprints, and the
general movement to be more green. Platform
power consumption has become a competitive
differentiator for the system manufacturers.

Add then that it has become widely recognized
that most (commercial) data-center servers
generally run at low loads with resources
underutilized except during periods of peak
business activity – which will vary widely for
various types of businesses and geographies.

Since there is no “typical” load level, the
graduated load was conceived to assess power
management across what has come to be
known as the “load line”.

The benchmark reports the power consumption
and the performance at each load level,
allowing the reader to reasonably match their
usage and determine power usage for that
platform.

1. Platform Capacity Adjustment

Systems of widely different capacity must be
fairly measured, so a method was conceived to
determine the full transaction throughput
capacity of a given system, and then increment
the workload gradations accordingly.

A benchmark run begins with 3 or more
“calibration levels” where an ungated stream of
transactions is presented to the application.
The calibration workloads are unrealistic but
they serve to determine the full performance
potential of the system – with the
SPECpower_ssj2008 application and
transaction mix.

The calibration throughput is used to set a
“throughput target” for the 100% load level.

The other load levels are then graduated
percentages of the calibrated target load. In
the normal case, the levels are increments of
10%. Fewer or more levels are configurable.

It is important, when interpreting data in this
paper and from the SPECpower_ssj2008
disclosure reports that the load levels labeled
as percentages are a percent of “target
calibrated throughput”.

It is a common misconception that gradations
are governed by processor utilization.

 Processor (or CPU) utilization is an outcome
of the benchmark and considered to be unique
to a given platform. Since there are a number
of vagaries and sometimes gross differences to
the meaning of CPU utilization from one
architecture to another, this point is
emphasized. (We encourage someone to use
this as a topic a future paper).

2. Measurement Intervals

The graduated method loads the system with a
given throughput for a fixed amount of time
during which power is measured every second
along with the effective transaction rate at that
second.

Figure 2 provides a graphic example of second
by second transaction throughput across five
levels of transaction load. The benchmark form
of SPECpower_ssj2008 implements 10 load
levels plus the state known as “active idle”.

Fig 2 – Graduated Load Example

3. Active Idle

Idle is generally the state when the system is
running no applications nor performing any
operating system management tasks. CPU
utilization is zero. We could label this state
"OS idle".

The duration of idle states can vary from
fractions of seconds to minutes. Modern
operating systems run many asynchronous

time in seconds

Graduated Load Example

average ssj_ops per second

op
er

at
io

ns
 p

er
 s

ec
on

d

100%

ssj_ops at 80% target load

60%

40%

20% active idle

level 01 level 02 level 03 level 06level 04 level 05

time in seconds time in seconds

Graduated Load Example

average ssj_ops per second

op
er

at
io

ns
 p

er
 s

ec
on

d

100%

ssj_ops at 80% target load

60%

40%

20% active idle

level 01 level 02 level 03 level 06level 04 level 05

> Characterization of SPECpower_ssj2008) <

Page 4 of 11

4

background tasks and therefore most servers
are never totally idle for long periods.

"Active idle" is a SPEC defined state where an
application is running and no transactions are
incoming or in process; the system is ready to
quickly respond to any incoming transactions.

Given that servers are usually operating 24 x 7
they are also ready to accept transactions
therefore “active idle” is the most common
operating state.

In this benchmark, active idle is handled and
measured virtually the same as the other 10
load levels, except no transactions are
scheduled.

1. Workload States and State Changes

Accurate, consistent and repeatable
measurement of performance and power
together requires that there be mechanisms to
assure that a period known as the
measurement interval is carefully defined,
delineated and controlled.

This control is implemented through the
definition of “states” which identify the various
phases of the workload in the detailed CCS log
file. In the case of a graduated workload, the
load type and level number is included.

These states and the change rules are built in
to the ssj2008 code and passed to the director
along with the per second average
performance, time stamps and other meta
data.

There are four distinct phases of any given load
level:

1. “inter” is a period between load levels. This
method creates a break between load levels
that eases post run visual analysis.

2. “ramp up” (pre-measurement) is a period
of time that allows the application to reach a
level of processing that will continue for the
duration.

3. “recording” is where data is collected and
summarized in post-processing steps. This is
the “measurement interval”.

4. “ramp down” (post-measurement) is a
period of time where the application will
continue to process transactions till the very
end of the load level.

Following ramp down, the cycle begins again
with another “inter” level or if all configured
levels have been completed, the workload can
terminate normally.

State changes for one workload level are
illustrated below in the chart in figure 3.

Note that power is measured continuously to
enable detailed analysis. For reporting purpose
in benchmark disclosures, only the average
power in the measurement interval is used.
Also all these intervals are long enough to
provide sufficient settle time for consistent
power and performance measurements.

Fig 3 – State changes in a load level

III. SERVER RESOURCE UTILIZATION

A. Overview

The SPECpower_ssj2008 benchmark emulates
a server side Java transaction processing
application. It exercises processors, processor
caches, the memory hierarchy,
implementations of the JVM (Java Virtual
Machine), JIT (Just-In-Time) compiler, garbage
collection, threads and some aspects of the
operating system.

A Java application was chosen for the very
important advantage of cross operating system
portability. The opportunity to leverage
existing code from the SPECjbb2005
benchmark was irresistible.

Base code and transaction types [15] are from
SPECjbb2005, but many substantive changes
make the two not comparable. Some notable
differences are a modified transaction mix,
transaction scheduling and arrival method,
calibration to seek the platform peak
transaction capacity, altered throughput
accounting, data collection via a network with
TCP/IP, additional logging that increases disk
I/O, plus other less significant changes.
Overall, even though ssj2008 is derived from
SPECjbb2005, it is very different.

pr
e-

m
ea

su
re

m
en

t

load level

240
seconds

30
secs

op
er

at
io

ns
 p

er
 s

ec
on

d
time

po
st

-m
ea

su
re

m
en

t

de
la

y
be

tw
ee

n
lo

ad
 le

ve
l

10
secs

de
la

y
be

tw
ee

n
lo

ad
 le

ve
l

measurement
interval

measurement
interval

“go” “stop”
power measurement

30
secs

10
secs

not to scale

> Characterization of SPECpower_ssj2008) <

Page 5 of 11

5

While running, the application makes some use
of the network and does minimal disk I/O.
Actual data rates are shown in a later section.

With the arrival of multi-core processors in
symmetric multi-processor systems, a high
degree of scalability was a top benchmark
design goal.

It is expected that the benchmark will be run
on a very wide range of low end and mid-range
servers which span the space from a single
socket single processor core (uni-processor
servers) up to servers that support multiple
processors (SMP or symmetric multiprocessor)
where each processor can incorporate 1, 2, 4
and likely more processing cores – then some
implementations will support SMT
(Simultaneous Multi-threading).

Conscious design decisions were made such
that additional disks or network interfaces
would not be necessary with increases in
available processing capacity.

The scalability of the benchmark is an
incredibly positive attribute when setting out to
measure power and the performance of basic
system infrastructure (processors, chipset,
memory, fans, power supply, etc.) across
platforms with a very broad range of
transaction processing capacity.

B. Resource Usage and Platform Power
Consumption

To the above that we also understand that
platform power consumption under varied loads
is largely driven by the power requirements of
the processors (a generalization that applies to
most platforms available today) which changes
with the applied load. This may seem counter-
intuitive since memory and disks are both
subject to dynamic and random access.

Memory power consumption does change with
load, however, as a percentage of total
platform power, the range from idle to full load
might be only 1-2% of platform power. Use
this information only as a guide since memory
designs, types, and densities can be quite
different in their behavior from one to another.

Modern high density disk drives show similar
behavior. Once spun up, power changes are
small with usage, again relative to total
platform power.

Network interface cards (NICs) follow the same
pattern that when enabled, with a LAN cable

plugged in, a NIC is consuming power very
near its maximum and very small power
increase is seen with higher traffic, again on
the order of 1% or less of total platform power.

As a caveat, it is important to note that the
observations above apply to the types of
memory, disks and NICs found in high volume
platforms common to x86 servers. Exhaustive
studies of peripheral and component power
consumption are yet to be completed.

IV. SPECPOWER_SSJ2008 METRIC DEFINITION

A. The primary metric

The primary metric for SPECpower_ssj2008 is
“overall ssj_ops/watt” where:

B. Unprecedented data in Full Disclosure Report

The SPECpower_ssj2008 Full Disclosure Report
(FDR) presents and abundance of data on
performance, power as well as detailed
configuration data. Table 1 below has been
copied from FDR of SPECpower_ssj2008
publication [14] and highlights important data
fields [7] and values:

Table 1 – Performance and power data

In table 1 above, ssj_ops column, first row, is
ssj_ops@100%. The fourth and fifth columns
contain average power (in watts) and a
performance to power ratio at each level. The
“primary” metric is highlighted in the last row.
Following page one of the FDR, are several
more pages with important configuration,
environment and electrical data from the
benchmark run.

468∑ssj_ops / ∑power =
01980Active Idle

11020622,64910.20%10%
20721344,15719.90%20%
30222166,87530.10%30%
39022989,38840.20%40%
465237110,22249.60%50%
541245132,52559.60%60%
616254156,34470.30%70%
677261176,68479.50%80%
746269200,86090.40%90%
799276220,30699.10%100%

Average
Power

(W)
ssj opsActual

Load
Target
Load

Performance
to Power

Ratio

PowerPerformance

468∑ssj_ops / ∑power =
01980Active Idle

11020622,64910.20%10%
20721344,15719.90%20%
30222166,87530.10%30%
39022989,38840.20%40%
465237110,22249.60%50%
541245132,52559.60%60%
616254156,34470.30%70%
677261176,68479.50%80%
746269200,86090.40%90%
799276220,30699.10%100%

Average
Power

(W)
ssj opsActual

Load
Target
Load

Performance
to Power

Ratio

PowerPerformance

“overall ssj_ops/watt”
= ∑ 11 avg-trans-rate pts / ∑ 11 power pts

> Characterization of SPECpower_ssj2008) <

Page 6 of 11

6

V. PLATFORM HARDWARE AND SOFTWARE DETAILS

A. Platform configuration details

To understand and characterize this
benchmark, we used an Intel® Xeon® based,
2 socket Intel “white box” server with the
following configuration described in Table 2:
SUT: SUT: Intel® “White Box”

HW Dual and Quad Core Intel® Xeon® 2.0 & 3.0 GHz
Supermicro* X7DB8/ Main Board, Super Micro 5000P
4x 2GB FBDIMMs
1x 700W PSU
5U Tower Platform

OS Microsoft* Windows Server 2003 64 bit
Power Options Server Balanced Processor Power and Performance

JVM JVM: BEA* JRockit* P27.4.0 64 bit
JVM Options JVM Command Line similar to published results

Sampling Rates Power: 1 second (average from meter)
SPECpower_ssj2008 setup

SSJ Director on SUT
Load levels 120 seconds

Table 2 – Platform hardware - software details

Load levels of 120 seconds were used to reduce
total run time as we have observed that
measurements from shorter load levels are
reasonably consistent with that of 240 sec load
levels.

Also note that we do not use
SPECPower_ssj2008 metrics, since the
measurements in this report are largely “non-
compliant”; that is, they can not be published
along side full disclosure reports. Data herein
is intended for “academic” use only.

The measurements and observations in the
following sections are in large part exclusive to
the Microsoft Windows Server operating
environment. Disk write frequency and rates
are largely governed by policies of the OS
used. Platforms other than those used in this
study may also affect the resource utilization
characteristics.

VI. SPECPOWER_SSJ2008 CHARACTERIZATION

DATA

A. SSJ_2008– per JVM instance

Code footprint size

Each SSJ (JVM) instance has a code size of
~1.5 MByte; when totaling the size of all
methods that have been JITed and optimized.

Data footprint size

Each warehouse thread has ~50 MBytes of long
lived “database” objects and produces
~8Kbytes of short lived transient objects per
SSJ transaction. The overall data footprint
depends on the number of threads

(warehouses) and maximum throughput
produced.

Java Heap Size and Sizing

The Java heap size is user configurable where
the best size is dependent upon available
memory and the number of JVMs chosen for a
particular run. An optimal heap size is
necessary for optimal performance.

A heap size too big could cause memory
swapping (total heap size > RAM). Too small a
heap will incur a performance penalty due to
frequent Garbage Collections (GC).

Overall, due to the nature of the Java heap, an
application can exercise any amount of
memory and a user could measure the energy
consumption impact, but the performance
component only benefits to a certain extent.

The optimal physical memory size is
throughput capacity - processing capability –
dependent and does vary by platform and its
hardware expandability. As an example, for
Quad-Core Intel Xeon based Dual Processor
systems, ~8GB RAM is optimal when running
SPECpower_ssj_2008.

B. Processor Utilization

Figure 4 below show CPU % utilization tracking
closely with the transaction loads on the Intel
Core 2 architecture. On other micro-
architectures it will vary (SMT etc.).

Load level targets are set to be percentages of
ssj_ops@calibrated, the average of the last two
calibration levels.

We repeat that readers must be aware that
CPU utilization is no part of the benchmark.

 Fig 4 – CPU % utilization

Average second by second ssj_ops are
exhibiting the expected variability within a load
level because the inter-arrival time of
transactions is modeled with a negative
exponential distribution to better simulate
random arrival of work.

Transactions and Processor Utilization

0

40000

80000

120000

160000

200000

240000

152 352 552 752 952 1152 1352 1552 1752 1952 2152

seconds

ss
j o

ps

0
10
20
30
40
50
60
70
80
90
100
110

Pe
rc

en
t

avg txs % CPU

> Characterization of SPECpower_ssj2008) <

Page 7 of 11

7

C. Power and processor utilization

Figure 5 below shows that Power consumption
varies with load. Also the variability of
transaction throughput is being reflected in
power consumption changes (watts).

Fig 5 – Power and CPU % utilization

D. Power, ssj_ops, and processor utilization

Plotted points in Figure 6 shows that ssj_ops,
Power and CPU % utilization are changing
together – showing a distinc relationship one to
the other

Fig 6 – Power, ssj_ops, and CPU % utilization

E. % time in C1 state

Figure 7 below shows that % time in C1 state
is the inverse of CPU % utilization at all load
levels. Time in C1 state contributes to power
saving which varies with architecture, OS and
policies. For example Intel EIST “enabled” in
BIOS will result in more power saving at lower
utilizations.

 “C” states are lower processor power states.
Their specific definition is architecture and
implementation dependent

Fig 7 – % of Time in C1 state

F. Memory utilization

 Data in figure 8 below has been collected
using typical tuning (Xmx==Xms) where Java
heap allocated remains same throughout the
run. As a result committed memory in use
remains constant at all load levels including
active idle.

Fig 8 –Memory utilization

G. Network I/O

Data in Figure 9 indicates ~1500 Bytes/sec of
network I/O at all load levels including active
idle. As expected network traffic is similar at all
load levels and does not track load. Most of the
Network I/O is from per sec request/response
between Control & Collect (CCS) and SSJ_2008
Director.

Fig 9 –Network I/O

H. Disk I/O

Disk I/O in figure 10 shows regular bursts of
~140Kbyte writes. On an average there is
~3.3Kbytes/sec of Disk I/O at all load levels.
Most disk writes are related to SSJ_2008
logging. Disk reads average is zero.

Fig 10 –Disk I/O

Power and Processor Utilization

0

50

100
150

200

250

300
350

400

450

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

w
at

ts

0

20

40

60

80

100

120

P
er

ce
nt

watts % CPU

Transactions and Processor Utilization

0

40000

80000

120000

160000

200000

240000

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

ss
j o

ps

0

50

100

150

200

250

300

350

400

450

Pe
rc

en
t

avg txs % CPU watts

Network I/O

0

20

40

60

80

100

120

1 201 401 601 801 1001 1201 1401 1601 1801 2001
seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

0

500

1000

1500

2000

2500

3000

3500

4000

B
yt

es
 p

er
 S

ec

CPU % NIC Bytes Total/sec

Physical Disk I/O

0

10

20

30

40

50
60

70

80

90

100

110

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

100

20,100

40,100

60,100

80,100

100,100

120,100

140,100

160,100

180,100

B
yt

es
 p

er
 S

ec

% Processor Time Disk Write Bytes/sec

C1 state

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000
240000
260000

152 352 552 752 952 1152 1352 1552 1752 1952 2152
0
10
20
30
40
50
60
70
80
90
100
110

Pe
rc

en
t

avg txs % CPU total % C1 time

memory consumption

0
10
20
30
40
50
60
70
80
90

100
110

150 350 550 750 950 1150 1350 1550 1750 1950 2150
seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

Total % Processor Time mem % Committed Bytes in Use

> Characterization of SPECpower_ssj2008) <

Page 8 of 11

8

I. Basic system events

Figure 11 below shows interrupts rates of ~700
per second at all load levels including active
idle. Context switches are ~800 /sec at higher
utilization levels and decline at lower utilization
while dropping to ~400 at active idle. These
events are OS and platform dependent. Since
these events are showing strange patterns,
more investigation is needed.

Fig 11 –Basic system events

J. Impact of JVM optimizations

Selection of JVM options can have significant
impact on performance.

In this experiment, we compared “no options”
to the set of “best known JVM options”. Figure
12 shows the difference in performance and
power

When using no JVM options (default options),
performance dropped by ~50% while power
dropped by 0 to 3%. Please note that any
findings from these experiments are dependent
on the JVM and its options.

Fig 12 –Impact of JVM Options

JAVAOPTIONS_SSJ=““
(None, default heap and optimizations)

JAVAOPTIONS_SSJ=“-Xms3000m -Xmx3000m
-Xns2400m -XXaggressive –XxlazyUnlocking
-Xgc:genpar -XXcallprofiling -XXlargePages
-XXtlasize:min=12k,preferred=1024k”

K. Processor scaling

Figure 13 shows that when ssj_ops are plotted
on the x-axis, the additional capacity of Quad
Core Intel Xeon 2.0GHz/2x4MB L2 compared to
Dual Core Intel Xeon 2.0GHz/4MB L2 is clearly
evident.

Fig 13 –Processor scaling

Table 3 below shows that when comparing
these two types of processors, performance
improves drastically - ssj_ops@100% increased
by ~77% while power consumption@100%
increases by only ~1%.

Dual Core to Quad Core scaling
(Intel Xeon processors)

%
increase

ssj_ops@100% 77%

Power@100% 1%
Table 3 – Processor scaling

L. Frequency scaling

To view the impact of frequency scaling, in
Figure 14 below, we compared Quad Core
Intel® Xeon® (2x6MB L2) running at 2.0GHz
and 3.0GHz respectively.

Fig 14 –Frequency scaling

Comparing JVM with and without 'options'

0

50,000

100,000

150,000

200,000

250,000

300,000

cal 1 cal 2 cal 3 cal T 100 90 80 70 60 50 40 30 20 10 0

load level

ss
j_

op
s

200

250

300

350

400

450

w
at

ts

NoOpt avg-txs All avg-txs NoOpt Watts All Watts

Context Switches and Interrrupts

0

10

20

30

40

50

60

70

80

90

100

110

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

0

200

400

600

800

1,000

1,200

1,400

pe
r s

ec
on

d

% Processor Time Context Switches/sec Interrupts/sec

Comparing Dual Core and Quad Core Processors

0

100

200
300

400
500

600
700

800

900

0 50,000 100,000 150,000 200,000 250,000
ssj_ops

ss
j_

op
s/

w
at

t

Dual Core Intel Xeon Quad Core Intel Xeon

Comparing Frequency on Similar Processors

0
100
200
300
400
500
600
700
800
900

1000

0 50,000 100,000 150,000 200,000 250,000 300,000
ssj_ops

ss
j_

op
s/

w
at

t

Quad Core Intel Xeon 2.0 GHz Quad Core Intel Xeon 3.0 GHz

> Characterization of SPECpower_ssj2008) <

Page 9 of 11

9

Table 3 shows that for 2.0GHz to 3.0GHz Quad
Core Intel Xeon / 2x6MB L2, ssj_ops@100%
improves by ~24% while power
consumption@100% increases by ~10%.
Overall ssj_ops/Watt improves by ~76%.

Frequency Scaling
(Intel Xeon Quad Core processors)

%
increase

2.0 GHz to 3.0 GHz 50%
ssj_ops@100% 24%
Power@100% 10%

Table 3 – Frequency scaling

M. Platform generation scaling

New generation platforms almost always
deliver more performance, consume less power
and exhibit overall better energy efficiency. The
chart below shows three generations of
platforms from 2005, 2006 and 2008. Figure
15 below compares the results from three
SPECpower_ssj2008 benchmarks reports [14]
found on the SPEC web site, described in more
detail in Table 4 All dual processor platforms.

Fig 15 –Platform generation scaling

The SPECpower_ssj2008 benchmark results
provide compelling evidence that the latest
generation of Intel processors in commercial
servers are improving efficiency. With a 650%
increase in performance, the latest generation
platforms (with Intel Xeon E5450 processors)
consumes 20% less power, an overall
improvement of 700% in overall ssj_ops/watt
(from last row of Table 4 below).

 Processor Performance
ssj_ops@100%

Power(watts)
@100%

Overall
ssj_ops/watt

Single Core Intel
Xeon, 3.6GHz 40,852 336 87

Dual Core Intel
Xeon 5160,
3.0GHz

163,768 291 338

Quad Core Intel
Xeon E5450,
3.0GHz

308,022 269 698

Improvement 654% -20% 702%

Table 4 – Platform generation scaling

VII. SYSTEM CONFIGURATION CONSIDERATIONS

The SPECpower_ssj2008 benchmark metrics
have two primary components: performance
(ssj_ops) and power consumption (average
Watts). In this section, software and hardware
choices are listed that may impact
performance, power or both.

A. Performance Factors

The following factors can have a significant
impact on performance with unknown impact to
power consumption.

Java Virtual Machine (JVM)

Different JVMs will deliver different
performance.

JVM Parameters

A JVM can run by default (no options) but very
likely will not deliver optimal performance. To
find parameters for optimal performance, one
can search published results at SPEC website or
otherwise will need to find their own best
tuning parameters for a JVM.

Multiple SSJ instances

If a system has large number of logical cores,
often increasing the number of SSJ instances
with each JVM instance at no more than ~8
warehouse threads results in better
performance.

Affinity of SSJ instances

When running multiple SSJ instances,
affinitizing them to shared caches or each
socket or each NUMA node results in better
performance.

HW and OS settings

Some HW settings like enabling or disabling
features in BIOS or OS settings and use of
large pages can result in better performance.

B. Power Factors

The following factors can impact power
consumption significantly while minimally
impacting performance. They are provided
here for awareness purposes. Systems vary
widely with options; consult the manufacturer’s
documentation.

1. BIOS Power management options

Many systems provide BIOS options for power
management. The best choice of options
depends on your priorities. It is wise to check

Power and Performance Scaling Across Generations

0

200

400

600

800

1000

1200

1400

0 40,000 80,000 120,000 160,000 200,000 240,000 280,000 320,000 360,000

ssj_ops

ss
j_

op
s/

w
at

t

Single Core Intel Xeon, 3.6GHz
Dual Core Intel Xeon 5160, 3.0GHz
Quad Core Intel Xeon E5450, 3.0GHz

> Characterization of SPECpower_ssj2008) <

Page 10 of 11

10

the BIOS options since the best setting may or
many not be enabled by default.

Twp such power management options on Intel®
processor based systems is called “Intel EIST”.
Another is “C states” or C1 or C1E. Both
should be enabled if your objective is to reduce
power consumption.

2. Fan speed control in BIOS

Fans consume significant amount of power.
Selecting optimal settings for fan speed control,
when available, can reduce power consumption
without performance impact. In some cases if
fan speed is drastically reduced, it could lead to
lower performance due to system level thermal
throttling.

3. OS Power Management

Most operating systems have some power
management settings. With Microsoft Windows
Server 2003 for example, choosing “power
options” from the control panel and then the
option “balanced power and server
performance” will conserver power without
severe impact on performance.

4. Power Supplies (PSUs)

Many systems are ordered with optional
redundant power supplies. Reducing the
number of power supplies (without going below
the minimum needed) will result in lower power
consumption.

C. Memory Size and Performance

The most important factor in this category is
total system RAM size and configuration. The
platform configuration is the primary
determinant of power consumption. Memory
configuration can have following impact:

As RAM size is increased, both performance
and power consumption will increase.
Performance will increase (with associated heap
size adjustments) to some limit up to the
optimal amount of RAM. .

If RAM size is beyond the optimal size, there
may be no measurable increase in performance
but power consumption will increase with the
number (and type of) DIMMs.

RAM configuration or slot placement can have
an impact on performance if the platform
supports more than one memory channel and
memory interleaving which can improve
performance. Consult system documentation.

VIII. CONCLUSIONS

The SPECpower_ssj2008 benchmark and the
associated Full Disclosure Reports present an
unprecedented amount of data on the power
consumption and performance of server
systems across the graduated load levels.

The benchmark framework, with the power
data capture from the Power and Temperature
Daemon combined with the OS counters
collection daemon, with information captured
by the logging capability in CCS and SSJ makes
this benchmark a powerful and capable toolset
for new areas of behavioral data collection
exposing new fields of systems analysis.

 Based on the information presented in this
paper, we observe that most system resource
utilizations are following the expected patterns.
Processor Utilization follows the load line for
Intel Core 2 based platforms (note that this is
architecture dependent and CPU utilization is
no part of the benchmark).

Power consumption tracks the transaction load.
% time in C1 state is inversely proportional to
processor utilization at each load level. When
the min and max heap sizes are the same,
memory committed is constant across load line.
Disk I/O has regular bursts of ~140K byte
writes with overall average of ~3.3K bytes/sec
for all load levels while disk reads are none.
Network I/O is ~1.5K bytes/sec and is almost
constant across load line. The basic OS events
interrupts and context switches/sec have some
unique behavior which requires further
investigation.

Experiments using different JVM options,
processor scaling, frequency scaling and
platform generation scaling show that primary
metric for SPECpower_ssj2008 and associated
data fairly reflect configurations and OS
settings for performance, power and overall
ssj_ops/Watt.

All these results are specific to the platform
and OS measured. We expect similar data
from different architectures and OS(s) will be
very valuable. This initial characterization is
just a first look and more measurements are
required to continue in-depth characterization.

In summary, we are just getting started!

> Characterization of SPECpower_ssj2008) <

Page 11 of 11

11

Acknowledgment

Special appreciation to Christopher B.
Jorgensen, a graduate student intern from
Portland State University, for his work setting
up, running and validating multiple series of
measurements, collecting the bulk of the data
shown in this paper.

Legal

® is a trademark or registered trademark of
Intel Corporation or its subsidiaries in the
United States and other countries.

* Other names and brands may be claimed as
the property of others

** SPEC and the benchmark names are
trademarks of the Standard Performance
Evaluation Corporation

Performance Data as of 30 January 2008.

Performance tests and ratings are measured
using specific computer systems and/or
components and reflect the approximate
performance of Intel products as measured by
those tests. Any difference in system hardware
or software design or configuration may affect
actual performance. Buyers should consult
other sources of information to evaluate the
performance of systems or components they
are considering purchasing. For more
information on performance tests and on the
performance of Intel products, visit Intel
Performance Benchmark Limitations
(http://www.intel.com/performance/resources/l
imits.htm)

References

[1] SPEC, http://www.spec.org
[2] SPECpower_ssj2008

http://www.spec.org/power_ssj2008/
[3] SPECpower_ssj2008 User Guide

http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-User_Guide.pdf

[4] SPECpower_ssj2008 Hardware Setup Guide
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-Hardware_Setup_Guide.pdf

[5] SPECpower_ssj2008 FAQ
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-FAQ.html

[6] SPECpower_ssj2008 Run and Reporting rules
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-Run_Reporting_Rules.pdf

[7] SPECpower_ssj2008 Result File Filed
Description
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-Result_File_Fields.html

[8] SPECpower_ssj2008 Design Overview
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-Design_overview.pdf

[9] SPECpower_ssj2008 CCS Design
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-Design_ccs.pdf

[10] SPECpower_ssj2008 PTD Design
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-Design_ptd.pdf

[11] SPECpower_ssj2008 SSJ Design
http://www.spec.org/power_ssj2008/docs/SP
ECpower_ssj2008-Design_ssj.pdf

[12] SPEC Power and Performance Methodology
http://www.spec.org/power_ssj2008/docs/SP
ECpower-Methodology.pdf

[13] SPECpower_ssj2008 Release
http://www.spec.org/power_ssj2008/press/S
PECpower_ssj2008-Press%20Release.html

[14] SPECpower_ssj2008 publications
http://www.spec.org/power_ssj2008/results/r
es2007q4/power_ssj2008-20071129-
00015.html
http://www.spec.org/power_ssj2008/results/r
es2007q4/power_ssj2008-20071129-
00016.html
http://www.spec.org/power_ssj2008/results/r
es2007q4/power_ssj2008-20071129-
00023.html
http://www.spec.org/power_ssj2008/results/r
es2007q4/power_ssj2008-20071129-
00017.html

[15] Morin et al., IISWC 2005 “A multi-level
comparative performance characterization of
SPECjbb2005 versus SPECjbb2000”
http://ieeexplore.ieee.org/iel5/10230/32621/
01526002.pdf

[16] BEA JRockit 6 P27.4.0 JDK
http://dev2dev.bea.com/jrockit/releaseupdat
e.html

[17] BEA JRockit Command Line Reference
http://edocs.bea.com/jrockit/jrdocs/refman/i
ndex.html

