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Abstract— SPEC** recently released 
SPECpower_ssj2008, the first industry 
benchmark to measure performance and power 
of volume server class computers using 
graduated load levels. In this paper, we present 
a brief overview and an initial characterization of 
SPECpower_ssj2008 by measuring the utilization 
of system resources with the aid of processor 
monitoring events, at graduated load levels and 
by comparing the sensitivity of final metric and 
other related data between various 
configurations consisting of hardware changes as 
well as software changes on Intel® Xeon® 
processor based servers. Even though this is 
early data is from a specific platform and 
operating system, it does validate many expected 
behaviors and patterns opening exciting new 
opportunities for researchers to investigate 
specific areas as well as in-depth 
characterization as a next step.        
 

Index Terms— SPEC, SPECpower, 
SPECpower_ssj2008, performance to power 
ratio, Graduated load levels, overall 
ssj_ops/watt, energy efficiency, volume class 
Servers.  

I. INTRODUCTION 

December of 2007 brought a significant 
milestone for SPEC, the Standard Performance 
Evaluation Corporation, with the release of the 
industry’s first benchmark to measure the 
power and performance of volume server 
platforms with an innovative graduated 
workload.  

Formally named SPECpower_ssj2008, this new 
benchmark measures eleven levels of server 
loads from zero to 100% of a given platform’s 
full capacity to process business transactions 
with a server side Java application.  Full 
disclosure reports using this benchmark 
provide an unprecedented amount of new 
information on the power consumption and 
performance of the tested platform. 

In this paper we strive to provide some insights 
into workload behavior and server resource 
utilization characteristics of this benchmark 
above and beyond the wealth of information 
included in the now available SPEC provided 
documentation cataloged on the SPEC public 
website[1][2].   

The authors have been active members of the 
SPECpower benchmark development team from 
the outset and therefore are capable of 
providing valuable insights on the workload, 
the rationale for design decisions, and the 
strengths and inevitable weaknesses inherent 
in any such product. We share this information 
to enhance the understanding of the 
benchmark and its intended usage. Our intent 
is that others will benefit and therefore be 
more interested in using the benchmark as an 
evaluation tool across the wide array of studies 
to which it can apply.  

Fig 1 – Elements of the SPECpower Framework 

A. A little History 

The SPECpower committee was chartered in 
January of 2006 to create a benchmark that 
would address the emerging need to measure 
power consumption and performance of server 
class computer systems under application-like 
loads. The intersection of performance and 
power has become an important attribute of 
computer systems, sometimes labeled 
efficiency. A standard method of measuring 
and reporting both would require a disciplined 
approach beyond what was then available on 
the open market.  
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The fact that one workload or benchmark could 
not represent the spectrum of server usage 
was generally accepted and therefore the 
SPECpower committee was determined to 
create more than one “benchmark” in more 
than one application segment. 

The committee is and was staffed by engineers 
and managers from these companies: AMD*, 
Dell*, Fujitsu Siemens Computers*, HP*, IBM*, 
Intel*, and Sun Microsystems*.  The 
manufacturers were assisted by 
representatives from academia including the 
University of California Berkeley, Virginia 
Polytechnic Institute and State University, and 
Lawrence Berkeley National Laboratory. 

After two years of constant collaboration, 
design, coding and extensive testing efforts, 
the SPECpower committee released [13] its 
first benchmark named SPECpower_ssj2008 on 
December 11, 2007 to very positive reviews 
from industry and trade press.  

II. SPECPOWER_SSJ2008 OVERVIEW 

A. Measuring Power with Performance 

This section provides a brief overview of the 
SPECpower measurement framework described 
in more detail in the set of documents freely 
available at the SPEC public web site on the 
SPECpower_ssj2008page[2][3][4][5][6][8][9].   

For deeper understanding of the design of the 
benchmark and its essential elements, refer 
first the to the “SPEC Power and Performance 
Design Overview” [8][9][10][11][12].   

Several challenges are presented by the 
requirement to measure power consumption 
with performance, in particular at multiple load 
levels.    

A “measurement methodology” was established 
and then realized by implementing a 
measurement framework that requires a 
separate platform to which power and 
temperature measurement devices are 
attached, with the necessary logging and 
reporting functions.  

The two systems required are the system 
under test (SUT) and the Control and Collection 
System (CCS)[9].  Communications between 
the two systems is enabled by a standard 
ethernet local area network (LAN).  

 

 

The addition of a “measurement server” 
enables a host of benefits that include but are 
not limited to:  

• independence from the workload to enable 
quick integration of new workloads,  

• multiples measurements; the ability to 
manage a number of  SUTs and multiple 
measurement devices.  
multiple JVM instances are also supported.   

• low impact to the loads on the SUT for data 
consolidation and logging 

 
Altogether, the design permits extending the 
framework from the current capability to 
measure a stand-alone server with a single OS, 
to environments or topologies with multiple OS 
images, for instance blade servers and 
virtualized servers, with workloads appropriate 
to those environments. 

B. The Measurement Framework  

To better understand the terminology and 
characterization data later in this paper, a brief 
overview of the SPECpower framework 
software elements is provided.  Figure 1 is a 
graphic representation of the framework with 
the interconnections.  

On the left side of Figure 1, is the Control and 
Collect system (or measurement server).  On 
the right is the SUT where the workload runs.  
The “up arrow” on the right, under the SUT, 
points to a non-standard element (not provided 
by SPEC), the OS counters daemon (OSctrD).  
Created by Intel, this software implements the 
capability to  collect resource utilization data 
from a Windows OS platform, passing a 
configurable set of counter data to the CCS for 
logging, second by second, along side the 
power, performance and other essential data 
items. It is this additional element of the 
framework that enables producing the data 
shown later in this report.  

The ssj_2008 workload runs on a SUT plugged 
into a power analyzer plugged into the 
building’s power infrastructure, measuring 
power of the entire SUT platform.  This is 
sometimes described as “watts at the wall”.  

The power analyzer is connected to the CCS 
machine via a data cable where purpose built 
software, the PTD (Power and Temperature 
Daemon) records electrical activity from a 
power analyzer, and ambient temperature from 
a temperature sensor device placed at the air 
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in-flow to the SUT. 

The SPECpower_ssj2008 workload uses TCP/IP 
protocol to pass time, performance and status 
data to the CCS system which then 
consolidates that with power and temperature, 
and in this case the OS counters, logging all 
together into one record in a comma separated 
file.  

C. A Graduated Workload  

The notion of a graduated workload was 
inspired by the advent of processor power 
management technologies on volume server 
platforms, which are most effective at low 
loads and usually required to operate without a 
negative performance impact.   

All this is driven by the global need to conserve 
energy, reduce carbon footprints, and the 
general movement to be more green.  Platform 
power consumption has become a competitive 
differentiator for the system manufacturers.  

Add then that it has become widely recognized 
that most (commercial) data-center servers 
generally run at low loads with resources 
underutilized except during periods of peak 
business activity – which will vary widely for 
various types of businesses and geographies.  

Since there is no “typical” load level, the 
graduated load was conceived to assess power 
management across what has come to be 
known as the “load line”.    

The benchmark reports the power consumption 
and the performance at each load level, 
allowing the reader to reasonably match their 
usage and determine power usage for that 
platform. 

1. Platform Capacity Adjustment 

Systems of widely different capacity must be 
fairly measured, so a method was conceived to 
determine the full transaction throughput 
capacity of a given system, and then increment 
the workload gradations accordingly.   

A benchmark run begins with 3 or more 
“calibration levels” where an ungated stream of 
transactions is presented to the application.  
The calibration workloads are unrealistic but 
they serve to determine the full performance 
potential of the system – with the 
SPECpower_ssj2008 application and 
transaction mix.  

The calibration throughput is used to set a 
“throughput target” for the 100% load level.   

The other load levels are then graduated 
percentages of the calibrated target load.  In 
the normal case, the levels are increments of 
10%.  Fewer or more levels are configurable.  

It is important, when interpreting data in this 
paper and from the SPECpower_ssj2008 
disclosure reports that the load levels labeled 
as percentages are a percent of “target 
calibrated throughput”.   

It is a common misconception that gradations 
are governed by processor utilization. 

   Processor (or CPU) utilization is an outcome 
of the benchmark and considered to be unique 
to a given platform.  Since there are a number 
of vagaries and sometimes gross differences to 
the meaning of CPU utilization from one 
architecture to another, this point is 
emphasized.  (We encourage someone to use 
this as a topic a future paper).  

2. Measurement Intervals 

The graduated method loads the system with a 
given throughput for a fixed amount of time 
during which power is measured every second 
along with the effective transaction rate at that 
second.  

Figure 2 provides a graphic example of second 
by second transaction throughput across five 
levels of transaction load.  The benchmark form 
of SPECpower_ssj2008 implements 10 load 
levels plus the state known as “active idle”. 

Fig 2 – Graduated Load Example 

3. Active Idle 

Idle is generally the state when the system is 
running no applications nor performing any 
operating system management tasks.  CPU 
utilization is zero.   We could label this state 
"OS idle".  

The duration of idle states can vary from 
fractions of seconds to minutes. Modern 
operating systems run many asynchronous 
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background tasks and therefore most servers 
are never totally idle for long periods.  

"Active idle" is a SPEC defined state where an 
application is running and no transactions are 
incoming or in process; the system is ready to 
quickly respond to any incoming transactions.   

Given that servers are usually operating 24 x 7 
they are also ready to accept transactions 
therefore “active idle” is the most common 
operating state.  

In this benchmark, active idle is handled and 
measured virtually the same as the other 10 
load levels, except no transactions are 
scheduled. 

1. Workload States and State Changes 

Accurate, consistent and repeatable 
measurement of performance and power 
together requires that there be mechanisms to 
assure that a period known as the 
measurement interval is carefully defined, 
delineated and controlled.  

This control is implemented through the 
definition of “states” which identify the various 
phases of the workload in the detailed CCS log 
file. In the case of a graduated workload, the 
load type and level number is included.   

These states and the change rules are built in 
to the ssj2008 code and passed to the director 
along with the per second average 
performance, time stamps and other meta 
data.  

There are four distinct phases of any given load 
level:    

1. “inter” is a period between load levels. This 
method creates a break between load levels 
that eases post run visual analysis.  

2. “ramp up” (pre-measurement) is a period 
of time that allows the application to reach a 
level of processing that will continue for the 
duration. 

3. “recording” is where data is collected and 
summarized in post-processing steps. This is 
the “measurement interval”.  

4. “ramp down” (post-measurement) is a 
period of time where the application will 
continue to process transactions till the very 
end of the load level.  

Following ramp down, the cycle begins again 
with another “inter” level or if all configured 
levels have been completed, the workload can 
terminate normally.  

State changes for one workload level are 
illustrated below in the chart in figure 3. 

Note that power is measured continuously to 
enable detailed analysis.  For reporting purpose 
in benchmark disclosures, only the average 
power in the measurement interval is used. 
Also all these intervals are long enough to 
provide sufficient settle time for consistent 
power and performance measurements.  

 

Fig 3 – State changes in a load level 

III. SERVER RESOURCE UTILIZATION  

A. Overview 

The SPECpower_ssj2008 benchmark emulates 
a server side Java transaction processing 
application.  It exercises processors, processor 
caches, the memory hierarchy, 
implementations of the JVM (Java Virtual 
Machine), JIT (Just-In-Time) compiler, garbage 
collection, threads and some aspects of the 
operating system.  

A Java application was chosen for the very 
important advantage of cross operating system 
portability.  The opportunity to leverage 
existing code from the SPECjbb2005 
benchmark was irresistible.  
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differences are a modified transaction mix, 
transaction scheduling and arrival method, 
calibration to seek the platform peak 
transaction capacity, altered throughput 
accounting, data collection via a network with 
TCP/IP, additional logging that increases disk 
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Overall, even though ssj2008 is derived from 
SPECjbb2005, it is very different.   
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While running, the application makes some use 
of the network and does minimal disk I/O.  
Actual data rates are shown in a later section.  

With the arrival of multi-core processors in 
symmetric multi-processor systems, a high 
degree of scalability was a top benchmark 
design goal.  

It is expected that the benchmark will be run 
on a very wide range of low end and mid-range 
servers which span the space from a single 
socket single processor core (uni-processor 
servers) up to servers that support multiple 
processors (SMP or symmetric multiprocessor) 
where each processor can incorporate 1, 2, 4 
and likely more processing cores – then some 
implementations will support SMT 
(Simultaneous Multi-threading).   

Conscious design decisions were made such 
that additional disks or network interfaces 
would not be necessary with increases in 
available processing capacity.  

The scalability of the benchmark is an 
incredibly positive attribute when setting out to  
measure power and the performance of basic 
system infrastructure (processors, chipset, 
memory, fans, power supply, etc.) across 
platforms with a very broad range of 
transaction processing capacity.  

B. Resource Usage and Platform Power 
Consumption 

To the above that we also understand that 
platform power consumption under varied loads 
is largely driven by the power requirements of 
the processors (a generalization that applies to 
most platforms available today) which changes 
with the applied load. This may seem counter-
intuitive since memory and disks are both 
subject to dynamic and random access.  

Memory power consumption does change with 
load, however, as a percentage of total 
platform power, the range from idle to full load 
might be only 1-2% of platform power.  Use 
this information only as a guide since memory 
designs, types, and densities can be quite 
different in their behavior from one to another. 

Modern high density disk drives show similar 
behavior.  Once spun up, power changes are 
small with usage, again relative to total 
platform power. 

Network interface cards (NICs) follow the same 
pattern that when enabled, with a LAN cable 

plugged in, a NIC is consuming power very 
near its maximum and very small power 
increase is seen with higher traffic, again on 
the order of 1% or less of total platform power.   

As a caveat, it is important to note that the 
observations above apply to the types of 
memory, disks and NICs found in high volume 
platforms common to x86 servers.   Exhaustive 
studies of peripheral and component power 
consumption are yet to be completed.  

IV. SPECPOWER_SSJ2008 METRIC DEFINITION 

A. The primary metric 

The primary metric for SPECpower_ssj2008 is 
“overall ssj_ops/watt” where: 

B. Unprecedented data in Full Disclosure Report 

The SPECpower_ssj2008 Full Disclosure Report 
(FDR) presents and abundance of data on 
performance, power as well as detailed 
configuration data. Table 1 below has been 
copied from FDR of SPECpower_ssj2008 
publication [14] and highlights important data 
fields [7] and values:  

Table 1 – Performance and power data 

In table 1 above, ssj_ops column, first row, is 
ssj_ops@100%. The fourth and fifth columns 
contain average power (in watts) and a 
performance to power ratio at each level. The 
“primary” metric is highlighted in the last row. 
Following page one of the FDR, are several 
more pages with important configuration, 
environment and electrical data from the 
benchmark run. 

468∑ssj_ops / ∑power =
01980Active Idle

11020622,64910.20%10%
20721344,15719.90%20%
30222166,87530.10%30%
39022989,38840.20%40%
465237110,22249.60%50%
541245132,52559.60%60%
616254156,34470.30%70%
677261176,68479.50%80%
746269200,86090.40%90%
799276220,30699.10%100%
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Target 
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to Power 
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PowerPerformance
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“overall ssj_ops/watt”
= ∑ 11 avg-trans-rate pts / ∑ 11 power pts
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V. PLATFORM HARDWARE AND SOFTWARE DETAILS 

A. Platform configuration details  

To understand and characterize this 
benchmark, we used an Intel® Xeon® based, 
2 socket Intel “white box” server with the 
following configuration described in Table 2: 
SUT: SUT: Intel® “White Box”

HW Dual and Quad Core Intel® Xeon® 2.0 & 3.0 GHz
Supermicro* X7DB8/  Main Board, Super Micro 5000P
4x 2GB FBDIMMs
1x 700W PSU
5U Tower Platform

OS Microsoft* Windows Server 2003 64 bit
Power Options Server Balanced Processor Power and Performance 

JVM JVM: BEA* JRockit* P27.4.0 64 bit
JVM Options JVM Command Line similar to published results

Sampling Rates Power: 1 second (average from meter)
SPECpower_ssj2008 setup

SSJ Director on SUT 
Load levels 120 seconds  

Table 2 – Platform hardware - software details 

Load levels of 120 seconds were used to reduce 
total run time as we have observed that 
measurements from shorter load levels are 
reasonably consistent with that of 240 sec load 
levels.   

Also note that we do not use 
SPECPower_ssj2008 metrics, since the 
measurements in this report are largely “non-
compliant”; that is, they can not be published 
along side full disclosure reports.  Data herein 
is intended for “academic” use only.  

The measurements and observations in the 
following sections are in large part exclusive to 
the Microsoft Windows Server operating 
environment.  Disk write frequency and rates 
are largely governed by policies of the OS 
used.  Platforms other than those used in this 
study may also affect the resource utilization 
characteristics.  

VI. SPECPOWER_SSJ2008 CHARACTERIZATION 

DATA 

A. SSJ_2008– per JVM instance 

Code footprint size 

Each SSJ (JVM) instance has a code size of 
~1.5 MByte; when totaling the size of all 
methods that have been JITed and optimized.  

Data footprint size 

Each warehouse thread has ~50 MBytes of long 
lived “database” objects and produces 
~8Kbytes of short lived transient objects per 
SSJ transaction. The overall data footprint 
depends on the number of threads 

(warehouses) and maximum throughput 
produced.  

Java Heap Size and Sizing 

The Java heap size is user configurable where 
the best size is dependent upon available 
memory and the number of JVMs chosen for a 
particular run.  An optimal heap size is 
necessary for optimal performance.  

A heap size too big could cause memory 
swapping (total heap size > RAM).  Too small a 
heap will incur a performance penalty due to 
frequent Garbage Collections (GC).  

Overall, due to the nature of the Java heap, an  
application can exercise any amount of 
memory and a user could measure the energy 
consumption impact, but the performance 
component only benefits to a certain extent.  

The optimal physical memory size is 
throughput capacity - processing capability –
dependent and does vary by platform and its 
hardware expandability. As an example, for 
Quad-Core Intel Xeon based Dual Processor 
systems, ~8GB RAM is optimal when running 
SPECpower_ssj_2008.  

B. Processor Utilization 

Figure 4 below show CPU % utilization tracking  
closely with the transaction loads on the Intel 
Core 2 architecture.  On other micro-
architectures it will vary (SMT etc.).  

Load level targets are set to be percentages of 
ssj_ops@calibrated, the average of the last two 
calibration levels.  

We repeat that readers must be aware that 
CPU utilization is no part of the benchmark.  

 Fig 4 – CPU % utilization 

Average second by second ssj_ops are 
exhibiting the expected variability within a load 
level because the inter-arrival time of 
transactions is modeled with a negative 
exponential distribution to better simulate 
random arrival of work. 
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C. Power and processor utilization 

Figure 5 below shows that Power consumption 
varies with load. Also the variability of 
transaction throughput is being reflected in 
power consumption changes (watts). 

Fig 5 – Power and CPU % utilization 

D. Power, ssj_ops, and processor utilization 

Plotted points in Figure 6 shows that ssj_ops, 
Power and CPU % utilization are changing 
together – showing a distinc relationship one to 
the other 

Fig 6 – Power, ssj_ops, and CPU % utilization 

E. % time in C1 state  

Figure 7 below shows that % time in C1 state 
is the inverse of CPU % utilization at all load 
levels. Time in C1 state contributes to power 
saving which varies with architecture, OS and 
policies. For example Intel EIST “enabled” in 
BIOS will result in more power saving at lower 
utilizations. 

 “C” states are lower processor power states. 
Their specific definition is architecture and 
implementation dependent 

Fig 7 – % of Time in C1 state 

F. Memory utilization 

 Data in figure 8 below has been collected 
using typical tuning (Xmx==Xms) where Java 
heap allocated remains same throughout the 
run. As a result committed memory in use 
remains constant at all load levels including 
active idle. 

Fig 8 –Memory utilization 

G. Network I/O 

Data in Figure 9 indicates ~1500 Bytes/sec of 
network I/O at all load levels including active 
idle. As expected network traffic is similar at all 
load levels and does not track load. Most of the 
Network I/O is from per sec request/response 
between Control & Collect (CCS) and SSJ_2008 
Director. 

Fig 9 –Network I/O 

H. Disk I/O 

Disk I/O in figure 10 shows regular bursts of 
~140Kbyte writes. On an average there is 
~3.3Kbytes/sec of Disk I/O at all load levels. 
Most disk writes are related to SSJ_2008 
logging. Disk reads average is zero. 

Fig 10 –Disk I/O 
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I. Basic system events 

Figure 11 below shows interrupts rates of ~700 
per second at all load levels including active 
idle. Context switches are ~800 /sec at higher 
utilization levels and decline at lower utilization 
while dropping to ~400 at active idle. These 
events are OS and platform dependent. Since 
these events are showing strange patterns, 
more investigation is needed. 

Fig 11 –Basic system events 

J. Impact of JVM optimizations 

Selection of JVM options can have significant 
impact on performance.  

In this experiment, we compared “no options” 
to the set of “best known JVM options”. Figure 
12 shows the difference in performance and 
power 

When using no JVM options (default options), 
performance dropped by ~50% while power 
dropped by 0 to 3%. Please note that any 
findings from these experiments are dependent 
on the JVM and its options. 

Fig 12 –Impact of JVM Options 

JAVAOPTIONS_SSJ=““  
(None,  default heap and optimizations) 

JAVAOPTIONS_SSJ=“-Xms3000m -Xmx3000m 
-Xns2400m -XXaggressive –XxlazyUnlocking 
-Xgc:genpar -XXcallprofiling -XXlargePages   
-XXtlasize:min=12k,preferred=1024k” 

K. Processor scaling 

Figure 13 shows that when ssj_ops are plotted 
on the x-axis, the additional capacity of Quad 
Core Intel Xeon 2.0GHz/2x4MB L2 compared to  
Dual Core Intel Xeon 2.0GHz/4MB L2 is clearly 
evident.  

Fig 13 –Processor scaling 

Table 3 below shows that when comparing 
these two types of processors, performance 
improves drastically - ssj_ops@100% increased 
by ~77% while power consumption@100% 
increases by only ~1%.   

Dual Core to Quad Core scaling 
(Intel Xeon processors) 

% 
increase 

ssj_ops@100% 77% 

Power@100% 1% 
Table 3 – Processor scaling 

L. Frequency scaling 

To view the impact of frequency scaling, in 
Figure 14 below, we compared Quad Core 
Intel® Xeon® (2x6MB L2) running at 2.0GHz 
and 3.0GHz respectively.  

Fig 14 –Frequency scaling 
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Table 3 shows that for 2.0GHz to 3.0GHz Quad 
Core Intel Xeon / 2x6MB L2, ssj_ops@100% 
improves by ~24% while power 
consumption@100% increases by ~10%. 
Overall ssj_ops/Watt improves by ~76%. 

Frequency Scaling 
(Intel Xeon Quad Core processors) 

% 
increase 

2.0 GHz to  3.0 GHz 50% 
ssj_ops@100% 24% 
Power@100% 10% 

Table 3 – Frequency scaling 

M. Platform generation scaling  

New generation platforms almost always 
deliver more performance, consume less power 
and exhibit overall better energy efficiency. The 
chart below shows three generations of 
platforms from 2005, 2006 and 2008.  Figure 
15 below compares the results from three 
SPECpower_ssj2008 benchmarks reports [14] 
found on the SPEC web site, described in more 
detail in Table 4 All dual processor platforms.  

Fig 15 –Platform generation scaling 

The SPECpower_ssj2008 benchmark results 
provide compelling evidence that the latest 
generation of Intel processors in commercial 
servers are improving efficiency. With a 650% 
increase in performance, the latest generation 
platforms (with Intel Xeon E5450 processors) 
consumes 20% less power, an overall 
improvement of 700% in overall ssj_ops/watt 
(from last row of Table 4 below). 

 Processor Performance 
ssj_ops@100% 

Power(watts) 
@100% 

Overall 
ssj_ops/watt

Single Core Intel 
Xeon, 3.6GHz  40,852 336 87 

Dual Core Intel 
Xeon 5160,  
3.0GHz 

163,768 291 338 

Quad Core Intel 
Xeon E5450, 
3.0GHz 

308,022 269 698 

Improvement  654% -20% 702% 

Table 4 – Platform generation scaling 

VII. SYSTEM CONFIGURATION CONSIDERATIONS 

The SPECpower_ssj2008 benchmark metrics 
have two primary components: performance 
(ssj_ops) and power consumption (average 
Watts). In this section, software and hardware 
choices are listed that may impact 
performance, power or both.  

A. Performance Factors 

The following factors can have a significant 
impact on performance with unknown impact to 
power consumption.  

Java Virtual Machine (JVM) 

Different JVMs will deliver different 
performance.  

JVM Parameters 

A JVM can run by default (no options) but very 
likely will not deliver optimal performance. To 
find parameters for optimal performance, one 
can search published results at SPEC website or 
otherwise will need to find their own best  
tuning parameters for a JVM. 

Multiple SSJ instances 

If a system has large number of logical cores, 
often increasing the number of SSJ instances 
with each JVM instance at no more than ~8 
warehouse threads results in better 
performance. 

Affinity of SSJ instances  

When running multiple SSJ instances, 
affinitizing them to shared caches or each 
socket or each NUMA node results in better 
performance. 

HW and OS settings  

Some HW settings like enabling or disabling 
features in BIOS or OS settings and use of 
large pages can result in better performance.  

B. Power Factors 

The following factors can impact power 
consumption significantly while minimally 
impacting performance.  They are provided 
here for awareness purposes.  Systems vary 
widely with options; consult the manufacturer’s 
documentation.  

1. BIOS Power management options 

Many systems provide BIOS options for power 
management. The best choice of options 
depends on your priorities.  It is wise to check 
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the BIOS options since the best setting may or 
many not be enabled by default.  

Twp such power management options on Intel® 
processor based systems is called “Intel EIST”. 
Another is “C states” or C1 or C1E.  Both 
should be enabled if your objective is to reduce 
power consumption.  

2. Fan speed control in BIOS 

Fans consume significant amount of power.  
Selecting optimal settings for fan speed control, 
when available, can reduce power consumption 
without performance impact.  In some cases if 
fan speed is drastically reduced, it could lead to 
lower performance due to system level thermal 
throttling. 

3. OS Power Management 

Most operating systems have some power 
management settings.  With Microsoft Windows 
Server 2003 for example, choosing “power 
options” from the control panel and then the 
option “balanced power and server 
performance” will conserver power without 
severe impact on performance.  

4. Power Supplies (PSUs) 

Many systems are ordered with optional 
redundant power supplies. Reducing the 
number of power supplies (without going below 
the minimum needed) will result in lower power 
consumption.  

C. Memory Size and Performance 

The most important factor in this category is 
total system RAM size and configuration. The 
platform configuration is the primary 
determinant of power consumption. Memory 
configuration can have following impact: 

As RAM size is increased, both performance 
and power consumption will increase. 
Performance will increase (with associated heap 
size adjustments) to some limit up to the 
optimal amount of RAM. . 

If RAM size is beyond the optimal size, there 
may be no measurable increase in performance 
but power consumption will increase with the 
number (and type of) DIMMs. 

RAM configuration or slot placement can have 
an impact on performance if the platform 
supports more than one memory channel and 
memory interleaving which can improve 
performance.  Consult system documentation.  

VIII. CONCLUSIONS 

The SPECpower_ssj2008 benchmark and the 
associated Full Disclosure Reports present an 
unprecedented amount of data on the power 
consumption and performance of server 
systems across the graduated load levels.   

The benchmark framework, with the power 
data capture from the Power and Temperature 
Daemon combined with the OS counters 
collection daemon, with information captured 
by the logging capability in CCS and SSJ makes 
this benchmark a powerful and capable toolset 
for new areas of behavioral data collection 
exposing new fields of systems analysis. 

 Based on the information presented in this 
paper, we observe that most system resource 
utilizations are following the expected patterns. 
Processor Utilization follows the load line for 
Intel Core 2 based platforms (note that this is 
architecture dependent and CPU utilization is 
no part of the benchmark).  

Power consumption tracks the transaction load. 
% time in C1 state is inversely proportional to 
processor utilization at each load level. When 
the min and max heap sizes are the same, 
memory committed is constant across load line. 
Disk I/O has regular bursts of ~140K byte 
writes with overall average of ~3.3K bytes/sec 
for all load levels while disk reads are none. 
Network I/O is ~1.5K bytes/sec and is almost 
constant across load line. The basic OS events 
interrupts and context switches/sec have some 
unique behavior which requires further 
investigation. 

Experiments using different JVM options, 
processor scaling, frequency scaling and 
platform generation scaling show that primary 
metric for SPECpower_ssj2008 and associated 
data fairly reflect configurations and OS 
settings for performance, power and overall 
ssj_ops/Watt.  

All these results are specific to the platform 
and OS measured.  We expect similar data 
from different architectures and OS(s) will be 
very valuable. This initial characterization is 
just a first look and more measurements are 
required to continue in-depth characterization. 

In summary, we are just getting started!  
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