

SPECjbb2005

Alan Adamson, IBM Canada
David Dagastine, Sun Microsystems
Stefan Sarne, BEA Systems

Topics

 Benchmarks
 SPECjbb2000

 Impact
 Reasons to Update
 SPECjbb2005

 Development
 Execution

Benchmarking
 Uses of benchmarks

 Estimation of system requirements (use for the customer),
choice of a candidate supplier

 Target for optimization efforts (use for the vendor, or possibly
a researcher)
 Evaluation of release-to-release improvements
 Evaluation of impact of proposed prototyped ideas

 Performance marketing (should be useful to both customer
and supplier)

 Performance marketing
 Usually “system x runs better on code y than system z”
 Having two many potential “code y”’s around is tough for a

development group
 Do not know how you will be compared
 So do not know what to work on

 And maybe for customers
 Do not know the value of a benchmark

SPECjbb2000
 Based on IBM code designed to test some C++ components
 Based on TPC-C workload
 Written in Java, using a persistence framework that was originally

written in C++
 Transactional, and highly parallel

 Database in-memory, using that persistence framework
 No file i/o or network activity measured

 Run transactional load from 1 to X warehouses (threads doing same
load)

 For each warehouse number, 30 second warmup, and a 2-minute
measurement period – record the number of transactions

 Score is the mean value from the warehouse with the peak value to
twice that

 Simple install-and-go benchmark, popular for Java performance
analysis – get a pretty scaling graph

 Typical report

Impact

 Active publication history
 366 (24-58-57-52-39-122-14)

 Significant impact on JVM Technology
 Refinements on locking
 GC challenged by large heaps
 Initial lead score of 80,348 progressed

to 2,505,420 in about 5 years

SPECjbb2000 – 4-Core Intel
Systems leading at
publication

Jan '02
Jul '02

Jan '03
Jul '03

Jan '04
July '04

Jan '05
Jul '05

Jan '06
0

50

100

150

200

Th
ou
sa
nd
s

IBM
JRockit

Problems with SPECjbb2000
 Not very ‘java’-ish

 Much is transliterated C++
 Uses roll-your-own data structures rather than java collections
 Overall structure not very object-oriented

 Financial calculations in float
 Should use BigDecimal

 No XML processing
 No standard logging (java.util.logging)
 Odd ‘fairness’ requirement

 ‘thread spread’
 Exposed by Intel hyperthreading (and strong affinity scheduling)

 Unrealistically parallel (much unnecessary synchronization)

SPECjbb2000 and large
systems

 Run-time
 Roughly 2.5 mins per warehouse
 Warehouses from 1 to 2*number of threads – could be 256
 640 minutes = 10 hours +

 Hit peak at ‘wrong place’
 Lots of jitter in results at the high end (GC, threading)

 Hard limit of 255 warehouses (scores for later whs count for 0)
 Garbage collection and very large heaps

 System.GC() called between measurement periods
 Allowed a generational GC strategy for large systems with JREs for

which an old space GC could be a catastrophe.
 Not a realistic customer scenario

General Goals
 Maintain a similar basic workload

 Well understood, easy to analyze, easy to run (load-and-go)
 Keep the pretty graphs

 Maintain same target scope – single address–space
 Shared memory systems

 Try to use java libraries wherever possible
 Put pressure on development teams to improve the libraries
 Not historically a major focus of interest from development teams

 Literature largely about JIT, GC
 Try to maintain a reasonably realistic usage scenario
 Simplify the process of running and submitting the benchmark
 Create a Java 5.0 benchmark

Specific Goals
 Replace the persistence framework with uses of

collection classes
 Introduce BigDecimal for monetary calculations
 Add standard JSE Logging
 Introduce XML usage

 Display (old green screens)
 Use XML messages in a queue to distribute work

 Get rid of System.GC()s – with implications
 Longer measurement period

 Multiple JVM option?

How Did We Do?
 Make it more java-ish

 Removed the persistence framework
 Replaced the previous data structures by HashMaps and TreeMaps
 Re-factored code for more object orientation (and along the way, introduced

use of Interfaces)
 Overall a success

 Make it Java5
 Quite successful – generics, auto-boxing, a few others

 Financial calculations in float
 Changed all monetary uses of float to BigDecimal
 This hits performance very significantly – not just in the computation time,

but the allocation load as well
 We have all adapted

 No XML Processing
 Re-wrote the display screen processing to build a DOM (Sun)
 (but XML gets written but never read, so no parsing is exercised)

How Did We Do? - 2
 No standard logging

 Introduced logging via use of java.util.logging
 Helpful tool

 Mitigate the complexity of the thread spread requirement
 Dropped the requirement
 Archives did not explain the rationale, and nobody could figure out

the justification
 Unrealistically parallel

 Proposed and prototyped a queuing mechanism whereby
transactions for all processors would be scheduled via shared work
queues, with transaction requests as XML packets (BEA)

 Performance could not be made reasonable so this was abandoned
 Means there is a lot of uncontended locking

How Did We Do? - 3
 GC

 Eliminated the System.GC()s – excellent
 High allocation rate

 A realistic pressure point
 Too concentrated in hot routines

 Run-Time on Large Systems
 Multi-JVM – e.g. on a 64-way, run 4 JVMs simultaneously as if each was on

a 16-way (cutting runtime by 4)
 Controversial

 No longer testing VM scaling, but some combination of OS and VM
scaling

 But a ‘realistic’ model, as app server deployments are often multi-JVM
 Concerns largely addressed by having 2 metrics, SPECjbb2005 bops,

and SPECjbb2005 bops/JVM, and both must be stated
 Mixed result – maybe should have had tighter run rules to separate the two

types of run
 Being used on small systems, possibly to hide scaling problems
 Also to mitigate NUMA hardware characteristics

Eighteen Months of
SPECjbb2005

 Much leapfrogging of key vendor results
 Overall and category leads passing back and forth

 Very significant JRE changes (largely visible on
command-lines) with giant impact
 Biased locking (with other names)
 Simple BigDecimal optimization
 Other library work (HashMap, etc)
 Others we don’t know the other guy has done
 General impact likely useful in wider cases

 Progress
 4-core from 37,034 to 130,589 SPECjbb2005 bops
 2-socket from 24,208 to 210,065 SPECjbb2005 bops

SPECjbb2005 History – 4-
Core Systems leading at
publication

Jun '05
Sep '05

Dec '05
Mar '06

Jun '06
Sep '06

Dec '06
0

50

100

150

Th
ou
sa
nd
s IBM pSeries

IBM xSeries
JRockit (x86)
Sun AMD

Disclaimers

 SPEC and SPECjbb are registered trademarks of the SPEC and SPECjbb are registered trademarks of the
Standard Performance Evaluation CorporationStandard Performance Evaluation Corporation

 SPECjbb2000 results were leading 4-core Intel-SPECjbb2000 results were leading 4-core Intel-
based results since early 2002based results since early 2002

 SPECjbb2005 results were 4-core results leading at SPECjbb2005 results were 4-core results leading at
the time of publicationthe time of publication

 All results cited are results at All results cited are results at www.spec.orgwww.spec.org as of as of
January 21, 2007January 21, 2007

http://www.spec.org/

