

SPECjbb2005

Alan Adamson, IBM Canada
David Dagastine, Sun Microsystems
Stefan Sarne, BEA Systems

Topics

 Benchmarks
 SPECjbb2000

 Impact
 Reasons to Update
 SPECjbb2005

 Development
 Execution

Benchmarking
 Uses of benchmarks

 Estimation of system requirements (use for the customer),
choice of a candidate supplier

 Target for optimization efforts (use for the vendor, or possibly
a researcher)
 Evaluation of release-to-release improvements
 Evaluation of impact of proposed prototyped ideas

 Performance marketing (should be useful to both customer
and supplier)

 Performance marketing
 Usually “system x runs better on code y than system z”
 Having two many potential “code y”’s around is tough for a

development group
 Do not know how you will be compared
 So do not know what to work on

 And maybe for customers
 Do not know the value of a benchmark

SPECjbb2000
 Based on IBM code designed to test some C++ components
 Based on TPC-C workload
 Written in Java, using a persistence framework that was originally

written in C++
 Transactional, and highly parallel

 Database in-memory, using that persistence framework
 No file i/o or network activity measured

 Run transactional load from 1 to X warehouses (threads doing same
load)

 For each warehouse number, 30 second warmup, and a 2-minute
measurement period – record the number of transactions

 Score is the mean value from the warehouse with the peak value to
twice that

 Simple install-and-go benchmark, popular for Java performance
analysis – get a pretty scaling graph

 Typical report

Impact

 Active publication history
 366 (24-58-57-52-39-122-14)

 Significant impact on JVM Technology
 Refinements on locking
 GC challenged by large heaps
 Initial lead score of 80,348 progressed

to 2,505,420 in about 5 years

SPECjbb2000 – 4-Core Intel
Systems leading at
publication

Jan '02
Jul '02

Jan '03
Jul '03

Jan '04
July '04

Jan '05
Jul '05

Jan '06
0

50

100

150

200

Th
ou
sa
nd
s

IBM
JRockit

Problems with SPECjbb2000
 Not very ‘java’-ish

 Much is transliterated C++
 Uses roll-your-own data structures rather than java collections
 Overall structure not very object-oriented

 Financial calculations in float
 Should use BigDecimal

 No XML processing
 No standard logging (java.util.logging)
 Odd ‘fairness’ requirement

 ‘thread spread’
 Exposed by Intel hyperthreading (and strong affinity scheduling)

 Unrealistically parallel (much unnecessary synchronization)

SPECjbb2000 and large
systems

 Run-time
 Roughly 2.5 mins per warehouse
 Warehouses from 1 to 2*number of threads – could be 256
 640 minutes = 10 hours +

 Hit peak at ‘wrong place’
 Lots of jitter in results at the high end (GC, threading)

 Hard limit of 255 warehouses (scores for later whs count for 0)
 Garbage collection and very large heaps

 System.GC() called between measurement periods
 Allowed a generational GC strategy for large systems with JREs for

which an old space GC could be a catastrophe.
 Not a realistic customer scenario

General Goals
 Maintain a similar basic workload

 Well understood, easy to analyze, easy to run (load-and-go)
 Keep the pretty graphs

 Maintain same target scope – single address–space
 Shared memory systems

 Try to use java libraries wherever possible
 Put pressure on development teams to improve the libraries
 Not historically a major focus of interest from development teams

 Literature largely about JIT, GC
 Try to maintain a reasonably realistic usage scenario
 Simplify the process of running and submitting the benchmark
 Create a Java 5.0 benchmark

Specific Goals
 Replace the persistence framework with uses of

collection classes
 Introduce BigDecimal for monetary calculations
 Add standard JSE Logging
 Introduce XML usage

 Display (old green screens)
 Use XML messages in a queue to distribute work

 Get rid of System.GC()s – with implications
 Longer measurement period

 Multiple JVM option?

How Did We Do?
 Make it more java-ish

 Removed the persistence framework
 Replaced the previous data structures by HashMaps and TreeMaps
 Re-factored code for more object orientation (and along the way, introduced

use of Interfaces)
 Overall a success

 Make it Java5
 Quite successful – generics, auto-boxing, a few others

 Financial calculations in float
 Changed all monetary uses of float to BigDecimal
 This hits performance very significantly – not just in the computation time,

but the allocation load as well
 We have all adapted

 No XML Processing
 Re-wrote the display screen processing to build a DOM (Sun)
 (but XML gets written but never read, so no parsing is exercised)

How Did We Do? - 2
 No standard logging

 Introduced logging via use of java.util.logging
 Helpful tool

 Mitigate the complexity of the thread spread requirement
 Dropped the requirement
 Archives did not explain the rationale, and nobody could figure out

the justification
 Unrealistically parallel

 Proposed and prototyped a queuing mechanism whereby
transactions for all processors would be scheduled via shared work
queues, with transaction requests as XML packets (BEA)

 Performance could not be made reasonable so this was abandoned
 Means there is a lot of uncontended locking

How Did We Do? - 3
 GC

 Eliminated the System.GC()s – excellent
 High allocation rate

 A realistic pressure point
 Too concentrated in hot routines

 Run-Time on Large Systems
 Multi-JVM – e.g. on a 64-way, run 4 JVMs simultaneously as if each was on

a 16-way (cutting runtime by 4)
 Controversial

 No longer testing VM scaling, but some combination of OS and VM
scaling

 But a ‘realistic’ model, as app server deployments are often multi-JVM
 Concerns largely addressed by having 2 metrics, SPECjbb2005 bops,

and SPECjbb2005 bops/JVM, and both must be stated
 Mixed result – maybe should have had tighter run rules to separate the two

types of run
 Being used on small systems, possibly to hide scaling problems
 Also to mitigate NUMA hardware characteristics

Eighteen Months of
SPECjbb2005

 Much leapfrogging of key vendor results
 Overall and category leads passing back and forth

 Very significant JRE changes (largely visible on
command-lines) with giant impact
 Biased locking (with other names)
 Simple BigDecimal optimization
 Other library work (HashMap, etc)
 Others we don’t know the other guy has done
 General impact likely useful in wider cases

 Progress
 4-core from 37,034 to 130,589 SPECjbb2005 bops
 2-socket from 24,208 to 210,065 SPECjbb2005 bops

SPECjbb2005 History – 4-
Core Systems leading at
publication

Jun '05
Sep '05

Dec '05
Mar '06

Jun '06
Sep '06

Dec '06
0

50

100

150

Th
ou
sa
nd
s IBM pSeries

IBM xSeries
JRockit (x86)
Sun AMD

Disclaimers

 SPEC and SPECjbb are registered trademarks of the SPEC and SPECjbb are registered trademarks of the
Standard Performance Evaluation CorporationStandard Performance Evaluation Corporation

 SPECjbb2000 results were leading 4-core Intel-SPECjbb2000 results were leading 4-core Intel-
based results since early 2002based results since early 2002

 SPECjbb2005 results were 4-core results leading at SPECjbb2005 results were 4-core results leading at
the time of publicationthe time of publication

 All results cited are results at All results cited are results at www.spec.orgwww.spec.org as of as of
January 21, 2007January 21, 2007

http://www.spec.org/

