Inflammatory title here

John L. Henning Performance Engineer, Sun Microsystems Vice-Chair, CPU Subcommittee

Is CPU2006 the last of SPEC's CPU benchmarks?

John L. Henning Performance Engineer, Sun Microsystems Vice-Chair, CPU Subcommittee

Resolved: SPEC CPU2006 is the last of SPEC's CPU benchmarks because:

- The end of Moore's Law is in sight
- CPUs aren't so important anymore
- CPU2006 has enough in it to keep people busy indefinitely
- It's not maintainable
- There's no particular need for a follow-on suite
- The investment in suite development is not sustainable

The end of Moore's Law is in sight

J.Henning Sun Microsystems 21 Jan 2007

At least, according to some certain parties...

 "It can't continue forever. The nature of exponentials is that you push them out and eventually disaster happens." 😚 www.techworld.com/opsys/news/index.cfm?NewsID=3477

OS AND SERVERS NEWS 13 April 2005

Moore's Law is dead, says Gordon Moore

By Manek Dubash, Techworld

Moore's Law is dead, according to Gordon Moore, its inventor.

 Intel's Grove warns of the end of Moore's Law: Feeling the heat http://www.theinquirer.net/default.aspx?article=6677

- or the graphics card,
- or the WoW Authentication Server

The VAX 11/780 Day Is Long Past

• Once upon a time, a 1/4 million dollar system was cheap

• But the VAX 11/780 day was 9571 days ago - at least, according to Excel when asked to compute

=DATEVALUE("1/21/2007")-DATEVALUE("11/7/80")

CPU2006 has enough in it to keep people busy indefinitely

CINT2006 (Integer Component of SPEC CPU2006):

Benchmark	Language	Application Area	Brief Description							
400.perlbench	С	Programming Language	Derived from Perl V5.8.7. The workload includes SpamAssassin, MHonArc (an email indexer), and specdiff (SPEC's tool that checks benchmark outputs).							
<u>401.bzip2</u>	C	Compression	Julian Seward's bzip2 version 1.0.3, modified to do most work in memory, rather than doing I/O.							
<u>403.gcc</u>	С	C Compiler	Based on gcc Version 3.2, generates code for Opteron.							
<u>429.mcf</u>	C	Combinatorial Optimization	Vehicle scheduling. Uses a network simplex algorithm (which is also used in commercial products) to schedule public transport.							
<u>445.gobmk</u>	С	Artificial Intelligence: Go	Plays the game of Go, a simply described but deeply complex game.							
<u>456.hmmer</u>	С	Search Gene Sequence	Protein sequence analysis using profile hidden Markov models (profile HMMs)							
458.sjeng	С	Artificial Intelligence: chess	A highly-ranked chess program that also plays several chess variants.							
462.libquantum	С	Physics / Quantum Computing	Simulates a quantum computer, running Shor's polynomial-time factorization algorithm.							
<u>464.h264ref</u>	С	Video Compression	A reference implementation of H.264/AVC, encodes a videostream using 2 parameter sets. The H.264/AVC standard is expected to replace MPEG2							
471.omnetpp	C++	Discrete Event Simulation	Uses the OMNet++ discrete event simulator to model a large Ethernet campus network.							
<u>473.astar</u>	C++	Path-finding Algorithms	Pathfinding library for 2D maps, including the well known A* algorithm.							
483.xalancbmk	C++	XML Processing	A modified version of Xalan-C++, which transforms XML documents to other document types.							

Benchmark	Language	Application Area	Brief Description
410.bwaves	Fortran	Fluid Dynamics	Computes 3D transonic transient laminar viscous flow.
<u>416.gamess</u>	Fortran	Quantum Chemistry.	Implements a wide range of quantum chemical computations. The SPEC workload does self-consistent field calculations using the Restricted Hartree Fock method, Restricted open-shell Hartree-Fock, and Multi-Configuration Self-Consistent Field
<u>433.milc</u>	С	Physics/Quantum Chromodyn	A gauge field generating program for lattice gauge theory with dynamical quarks.
434.zeusmp	Fortran	Physics / CFD	ZEUS-MP is a computational fluid dynamics code developed at the Laboratory for Computational Astrophysics (NCSA, University of Illinois at Urbana-Champaign) for the simulation of astrophysical phenomena.
435.gromacs	C, Fortran	Biochemistry / Molecular Dynamics	Molecular dynamics, i.e. simulate Newtonian equations of motion for hundreds to millions of particles. The test case simulates protein Lysozyme in a solution.
436.cactusADM	C,Fortran	Physics / General Relativity	Solves the Einstein evolution equations using a staggered-leapfrog numerical method
<u>437.leslie3d</u>	Fortran	Fluid Dynamics	Computational Fluid Dynamics (CFD) using Large-Eddy Simulations with Linear- Eddy Model in 3D. Uses MacCormack Predictor-Corrector time integration
<u>444.namd</u>	C++	Biology / Molecular Dynamics	Simulates biomolecular systems. Test case has 92,224 atoms of apolipoprotein A-I.
447.dealII	C++	Finite Element Analysis	deal.II is a C++ library targeted at adaptive finite elements and error estimation. The testcase solves a Helmholtz-type equation with non-constant coefficients.
450.soplex	C++	Linear Programming, Optimization	Solves a linear program using a simplex algorithm and sparse linear algebra. Test cases include railroad planning and military airlift models.
453.povray	C++	Image Ray-tracing	Image rendering. The testcase is a 1280x1024 anti-aliased image of a landscape with some abstract objects with textures using a Perlin noise function.
454.calculix	C,Fortran	Structural Mechanics	Finite element code for 3D structural applications. Uses the SPOOLES solver library.
459.GemsFDTD	Fortran	Electromagnetics	Solves Maxwell equations in 3D using finite-difference time-domain (FDTD) method.
<u>465.tonto</u>	Fortran	Quantum Chemistry	An open source quantum chemistry package, using an object-oriented design in Fortran 95. The test case places a constraint on a molecular Hartree-Fock wavefunction calculation to better match experimental X-ray diffraction data.
<u>470.lbm</u>	С	Fluid Dynamics	Implements the "Lattice-Boltzmann Method" to simulate incompressible fluids in 3D
<u>481.wrf</u>	C,Fortran	Weather	Weather modeling from scales of meters to thousands of kilometers. The test case is from a 30km area over 2 days.
482.sphinx3	С	Speech recognition	A widely-known speech recognition system from Carnegie Mellon University

CFP2006 (Floating Point Component of SPEC CPU2006):

Handy PDF summary, airplane-reading-size, 20 copies in the back of the room

Run Rule Changes

- Base does not allow feedback directed optimization (still legal in peak)
- An unlimited number of flags may be set in base,
 - Why? Because flag counting is not worth arguing about. For example, is

-fast:np27 one flag, two, or three? Prove it. What if it's -fast np27

 But they must be set consistently, and rules for consistency have been tightened

Run-Time Dynamic Optimization Is Allowed, Subject to the Usual Rules

- Must be generally available, documented, supported
- HW and SW used by RDO must be disclosed
- You can't tweak the RDO system during the run

RDO v. Benchmarking

Challenge:

- SPEC tests: expected to be repeatable
- But RDO systems learn as they go
- An RDO system might learn too much and "carry over" to the next run of same benchmark
 - Value prediction is too easy when the inputs are always the same
 - Risk: reduce entire benchmark to a print statement
 - If you use RDO, you must have a method to prevent carryover

RDO Is Allowed in Base

- Must be "safe"
- RDO can assume program meets the Standard
- But can't assume it uses a subset of the standard
- You can't make it work only for the SPECsupplied inputs

CPU2006 has enough in it to keep people busy indefinitely

Summarizing last few slides:

- Lots of new benchmarks for optimizers to chew on
- Lots to do in base: improve optimizer heuristics in the absence of feedback
- Lots to do for run-time dynamic optimizers

It's Not Maintainable

SPEC CPU KLOC (lines of code x1000, incl. comments/whitespace)

00000	Benchmark	<u>.f</u>	<u>.c</u>	<u>.h</u>		Benchmark	<u>.f</u>	.f90	<u>.c</u>	<u>.h</u>	<u>.c</u>	00001-+2006	Benchmark	<u>.f</u>	.f90	.c	<u>.h</u>	<u>.c</u>	.hh
CP089	001.gcc1.35 (1)		16	22	SPECINC95	124 m00kgim			28	• '		SPECINT2006	400.peribench			124	40		
	008.espresso (1)		10	2		124.mooksim			104	16			401.bz1pz			405	27		
	022.11(1)		19			120.gcc			194	15			403.gcc			405	31		
	023.eqntott (1)	20	3	• 1		129.Compress			, L	••			429.mci			100	• • •		
	013.spice2g6 (I)	20	1			130.11			27	• /			445.gobmk			190	2		
	015.doduc (f)	5				132.1jpeg			27	3			456.nmmer			33	3		
	020.nasa/ (f)	2				134.perl			23	3			458.sjeng			13			
	030.matrix300	.4				147.vortex	-		52	14			462.libquantu			3	1		
	042.1pppp (1)	3			SPECip95	101.tomcatv	• 2						464.h264rei			46	5		
	047.tomcatv (f)	.2				102.swim	.4						471.omnetpp				17	31	
CPU89 Tot	al 214 KLOC	32	157	25		103.su2cor	2						473.astar				2	4	
				-		104.hydro2d	4						483.xalancbmk			6	.6	296	251
SPECint92	008.espresso		13	.6		107.mgrid	.5												
	022.li		7	.3		110.applu	3					SPECfp2006	410.bwaves	.9					
	023.eqntott		3	.1		125.turb3d	2						416.gamess	466					
	026.compress		1			141.apsi	7						433.milc			13	2		
	072.sc		8	.5		145.fpppp	2						434.zeusmp	37					
	085.gcc		105	22		146.wave5	7						435.gromacs	23		72	13		
SPECfp92	013.spice2g6	36	1		CPU95 Total	425 KLOC	31	353	40				436.cactusADM	3		87	13		
-	015.doduc	5											437.leslie3d	4					
	034.mdljdp2	4			SPECint2000	164.gzip			7	.9			444.namd				3	2	
	039.wave5	7				175.vpr			16	.8			447.dealII				100	82	17
	047.tomcatv	.4				176.gcc			210	18			450.soplex				14	27	
	048.ora	. 5				181.mcf			1	. 5			453.povrav				14	141	
	052.alvinn		.3			186.crafty			19	1			454.calculix	44		97	26		
	056.ear		4	. 4		197.parser			10	. 5			459.GemsEDTD		12		20		
	077.mdlisp2	3	-	••		252.eon				17	23		465 tonto		165				
	078 stm256	5				253 perlbmk			61	23	25		470.1bm		105	9	3		
	089 892005					254 gap			50	11			491 wrf		129	20	57		
	000 hydro2d	~				254.gap			59	14			401.WII 402 anhiny2		120	10			
	090.11901020	1	1			255.Vortex			52	01			402.5011185			10			
	093.hasa/	1	• 1			250.bzipz			10	.01		anu 2006 ma	-1 2 224 87.00	570	205	1000	270	503	267
	094.1pppp		145		00006-0000	300.twolf	~		19	• /		CP02006 TO	cal 3,334 KLOC	579	305	1228	370	583	267
CPU92 TOL	al 240 KLOC	70	145	24	SPECIP2000	168.Wupwise	2												
						1/1.swim	• 4												
					172.mgrid	.5						Extensions	Also 11	nclude					
SPEC CPU89 (then called "SPECmark") did				did		173.applu	3						.t	• F					
not have a distinction between SPECfp and			fp and		177.mesa			50	11			.190	.F90 .:	int .u	se				
SPECint. But if a benchmarks is marked					178.galgel		15					.c							
"(i)" above, that means that a similarly-					179.art			11				.h	.inc .o	lef					
named benchmark was later classified as					183.equake			1				.c	.cpp .c	cc					
integer; similarly, "(f)" above indicates				187.facerec		2					.hh	.hpp .:	LCC						
floating point.				188.ammp			13	.2											
						189.lucas		2											
						191.fma3d		60											
						200.sixtrack	48												
						301.apsi	7												
					CPU2000 Tota	al 811 KLOC	62	80	542	102	23								

It's Not Maintainable

- Any code set this size has bugs
- No one person can understand all of it
- SPEC, as a mostly volunteer organization, is not prepared to handle exploding SPEC CPU History support calls
 SPEC CPU History Lines of code x 1000
- Certainly not if growth continues on this curve

J.Henning Sun Microsystems 21 Jan 2007

There's no particular need for a follow-on suite

One committee member has repeatedly claimed that CPU2006 is so much better than CPU2000 that there just won't be a need to update it.

There's no particular need for a follow-on suite

One committee member has repeatedly claimed that CPU2006 is so much better than CPU2000 that there just won't be a need to update it.

> "Everything that can be invented has been invented."

There's no particular need for a follow-on suite

One committee member has repeatedly claimed that CPU2006 is so much better than CPU2000 that there just won't be a need to update it.

> "Everything that can be invented has been invented."

- U.Legend http://tinyurl.com/2vkqlc aka

http://www.findarticles.com/p/articles/mi_m2843/is_3_27/ai_100755224/print

- www.spec.org/cpu2006/docs/credits.html names 116 people (well, 82 uniq people) who worked on CPU2006
- SPEC is largely a volunteer organization
- In these days of tightening budgets and greater accountability, people won't get away with investing so much time in the future

Just a moment

We appear to be receiving some measurements regarding the talk up to this point

Perhaps there's another side to this story

Barrett: No end in sight for Moore's Law

By Stephen Shankland

http://news.com.com/Barrett+No+end+in+sight+for+Moores+Law/2100-1006_3-5594779.html

Story last modified Tue Mar 01 13:53:37 PST 2005

SAN FRANCISCO--Moore's Law will boost chip abilities for many years to come, Intel CEO Craig Barrett predicted on Tuesday.

The momentum will be kept up first through conventional manufacturing processes, then for many years after that by other technology, he said in a keynote speech at the Intel Developer Forum here.

Barrett predicted that traditional chipmaking technology will permit features as small as 5 nanometers--about the width of 50 hydrogen atoms--to be used on processors.

"We can see how to do this down into the 5-nanometer range," Barrett said. "Beyond that, lots of leakage currents and things like that get in the way. But every time we seem to get into a roadblock, the bright engineers...seem to circumvent that problem."

Click to view 🕻

The future of Intel and the computing industry in general depends in large measure on the ability to pack more circuitry components, called transistors, ever more tightly onto a slice of silicon. To do that, the size of chip features must be shrunk.

Intel today is preparing to introduce processors with features measuring 65 nanometers, or billionths of a meter. Company engineers have forecast the feasibility of 5-nanometer manufacturing processes before. But the public declaration of the chipmaker's top executive carries more weight.

"He was willing to extend the planning horizon to 5 J.Henning Sun Microsystems 21 Jan 2007

"Predictions are dangerous, especially when they're about the future"

- Y. Berra

"Moore's Law is a violation of Murphy's Law. Everything gets better and better."

> - G. Moore, 2005, in The Economist, quoted @ wikipedia

CPUs aren't so important anymore

- SPEC CPU remains ¹/₂ of the traffic to www.spec.org
- Wirth's law:

Wirth's law - Wikipedia, the free encyclopedia

Whttp://en.wikipedia.org/wiki/Wirth%27s_law

↑ Q_▼ Google

Wirth's law

From Wikipedia, the free encyclopedia

Wirth's law in computing was made popular by Niklaus Wirth in 1995. There are two slightly different versions and it is unclear which was the original form, or where the law actually originated. The law states

Software gets slower faster than hardware gets faster.

or

Software is decelerating faster than hardware is accelerating.

CPU2006 has enough in it to keep people busy indefinitely

- That may depend on who you're trying to keep busy
- (story: Milford diner at 5am)

SPEC CPU Development Contributes to Optimizer Quality

• ISVs and users may not be strongly motivated to report optimizer bugs.

"Oh, it fails with -O5? What happens if you turn it down to -O3?"

- May not feel a need to find root cause: program bug, standards violation, or actual compiler bug.
- SPEC CPU benchmark development provides a continuing stream of test cases to chew on, with strong motivation to find root causes

Porter's Progress

- SPEC maintains a list of tested platforms and benchmark candidate status
- On 28 Feb 2005: 52 benchmarks x 33 platforms
- 135 unsuccessful tests tentatively assigned to the platform under test, not to the benchmark candidate.

Yes, there *is* a risk

There is also reason for confidence:

- Extensive pre-release testing
- Much of the growth has come from well-exercised open source apps
- The rate of changes due to *benchmark* problems has been low since March 2006.

It's not maintainable

- 6 changes for portability to additional compilers
- 1 actual problem (which did not prevent running the benchmark)

- 64-bit
- Other languages?
- Cache growth
- Low-hanging fruit
- The "lag"
 - Hard to get very best ISV algorithms into current suite
 - Not so much of a problem with OSS

- www.spec.org/cpu2006/docs/credits.html names 116 people (well, 82 uniq people) who worked on CPU2006
- SPEC is largely a volunteer organization
- In these days of tightening budgets and greater accountability, people won't get away with investing so much time in the future

www.spec.org/cpu2006/docs/credits.html names
116 people (well, 82 uniq people) who worked on CPU2006

•SPEC is largely a volunteer organization

 In these days of tightening budgets and greater accountability, people won't get away with investing so much time in the future

SPEC is largely a volunteer organization

- Yes, we all have employers with divergent interests
- But do <u>you</u> have the courage to say: *"Fair Benchmarks Are Important"*
 - To customers
 - To the industry
 - To my own institution
 - Distinction: long-term v. short term interests