
January 21, 2007 Paul Berube 1

Benchmark Design for Robust
Profile-Directed Optimization

SPEC Workshop 2007
Paul Berube and José Nelson Amaral

University of Alberta

NSERC Alberta Ingenuity iCore

January 21, 2007 Paul Berube 2

In this talk

• SPEC: SPEC CPU
• PDF: Offline, profile-guided optimization
• Test: Evaluate
• Data/Inputs: Program input data

January 21, 2007 Paul Berube 3

PDF in Research

• SPEC benchmarks and inputs used, but rules
seldom followed exactly
– PDF will continue regardless of admissibility in

reported results

• Some degree of profiling is taken as a given
in many recent compiler and architecture
works

January 21, 2007 Paul Berube 4

An Opportunity to Improve

• No PDF for base in CPU2006
– An opportunity to step back and consider

• Current evaluation methodology for PDF is
not rigorous
– Dictated by inputs/rules provided in SPEC CPU
– Usually followed when reporting PDF research

January 21, 2007 Paul Berube 5

peak_static

Current Methodology

Test
optimizing
compiler

input.ref
Static optimization

Flag Tuning

January 21, 2007 Paul Berube 6

peak_pdf

Current Methodology

Train Test

input.train

PDF
optimizing
compiler

input.ref
PDF optimization

Instrumenting
compiler

Flag Tuning

Profile

January 21, 2007 Paul Berube 7

Current Methodology

Train Test

input.train

PDF
optimizing
compiler

input.ref
PDF optimization

Instrumenting
compiler

Flag Tuning

Profile
if(peak_pdf > peak_static)
 peak := peak_pdf;

January 21, 2007 Paul Berube 8

Current Methodology

Train Test

input.train

PDF
optimizing
compiler

input.ref
PDF optimization

Instrumenting
compiler

Flag Tuning

Profile

if(peak_pdf > peak_static)
 peak := peak_pdf;
else
 peak := peak_static;

January 21, 2007 Paul Berube 9

if(peak_pdf > peak_static)
 peak := peak_pdf;
else
 peak := peak_static;

Current Methodology

Train Test

input.train

PDF
optimizing
compiler

input.ref
PDF optimization

Instrumenting
compiler

Flag Tuning

Profile

(peak_pdf > peak_static)
(peak_pdf > other_pdf)

Does 1 training
and 1 test input

predict PDF
performance?

Is this
comparison

sound?

January 21, 2007 Paul Berube 10

if(peak_pdf > peak_static)
 peak := peak_pdf;
else
 peak := peak_static;

Current Methodology

Train Test

input.train

PDF
optimizing
compiler

input.ref
PDF optimization

Instrumenting
compiler

Flag Tuning

Profile

(peak_pdf > peak_static)
(peak_pdf > other_pdf)

Does 1 training
and 1 test input

predict PDF
performance?

Is this
comparison

sound?

Variance
between inputs

can be larger than
reported

improvements!

January 21, 2007 Paul Berube 11

bzip2 – Train on xml
12

10
8
6

4

2

0
-2
-4

-6

> 14%

co
m

bi
ne

d
co

m
pr

es
se

d
do

cs ga
p

gr
ap

hi
c

jp
eg xm

l

lo
g

m
p3

m
pe

g

pr
og

ra
m

ra
nd

om
re

ut
er

s

pd
f

so
ur

ce

vs
. S

ta
ti

c

January 21, 2007 Paul Berube 12

PDF is like Machine Learning

• Complex parameter space
• Limited observed data (training)
• Adjust parameters to match observed data

– maximize expected performance

January 21, 2007 Paul Berube 13

Evaluation of Learning Systems

• Must take sensitivity to training and
evaluation inputs into account
– PDF specializes code according to training data
– Changing inputs can greatly alter performance

• Performance results must have statistical
significance measures
– Differentiate between gains/losses and noise

January 21, 2007 Paul Berube 14

Overfitting

• Specializing for the training data too closely
• Exploiting particular properties of the

training data that do not generalize
• Causes:

– insufficient quantity of training data
– insufficient variation among training data
– deficient learning system

January 21, 2007 Paul Berube 15

Overfitting

• Currently:
✗Engineer the compiler to not overfit the single

training data (underfitting)

✗No clear rules for input selection

✗Some benchmark authors replicate data between
train and ref

• Overfitting can be rewarded!

January 21, 2007 Paul Berube 16

Criteria for Evaluation

• Predict expected future performance
• Measure performance variance
• Do not reward overfitting
• Same evaluation criteria as ML

– Cross-validation addresses these criteria

January 21, 2007 Paul Berube 17

Cross-Validation

• Split a collection of inputs into two or more
non-overlapping sets

• Train on one set, test on the other set(s)
• Repeat, using a different set for training

Train Test

January 21, 2007 Paul Berube 18

Leave-one-out Cross-Validation

• If little data, reduce test set to 1 input
– Leave N out: only N inputs in test

Train Test

January 21, 2007 Paul Berube 19

Cross-Validation

• The same data is NEVER in both the training
and the testing set
– Overfitting will not enhance performance

• Multiple evaluations allows statistical
measure to be calculated on the results
– Standard deviation, confidence intervals...

• Set of training inputs allows system to
exploit commonalities between inputs

January 21, 2007 Paul Berube 20

Proposed Methodology

• PDFPeak score, distinct from peak
– Report with standard deviation

• Provide a PDF workload
– Inputs used for both training and evaluation, so

“medium” sized (~2 min running time)
– 9 inputs needed for meaningful statistical

measures

January 21, 2007 Paul Berube 21

Proposed Methodology

• Split inputs into 3 sets (at design time)
• For each input in each evaluation, calculate

speedup compared to (non-PDF) peak
• Calculate (over all evaluations)

– mean speedup
– standard deviation of speedups

January 21, 2007 Paul Berube 22

Example

jpeg
mpeg
xml
html
text
doc
pdf

source
program

PDF Workload
(9 inputs):

January 21, 2007 Paul Berube 23

Example – Split workload

jpeg
xml
pdf

mpeg
html

source

text
doc

program

A

B

C

jpeg
mpeg
xml
html
text
doc
pdf

source
program

PDF Workload
(9 inputs):

January 21, 2007 Paul Berube 24

Example – Train and Run

A

Train

Instrumenting
compiler

January 21, 2007 Paul Berube 25

Example – Train and Run

A

Train
PDF

optimizing
compiler

Instrumenting
compiler

Profile(A)

January 21, 2007 Paul Berube 26

Example – Train and Run

A B+C

mpeg 1%
html 5%
text 4%
doc -3%
source 4%
program 2%

Train Test
PDF

optimizing
compiler

Instrumenting
compiler

Profile(A)

January 21, 2007 Paul Berube 27

Mpeg 2%
html 5%
text 3%
doc -7%
source 1%
program 1%

Example – Train and Run

B A+C

jpeg 4%
xml -1%
text 5%
doc 1%
pdf 4%
program 1%

Train Test
PDF

optimizing
compiler

Instrumenting
compiler

Profile(B)

January 21, 2007 Paul Berube 28

Mpeg 2%
html 5%
text 3%
doc -7%
source 1%
program 1%

Example – Train and Run

A+BC

jpeg 2%
xml -3%
text 2%
doc 2%
pdf 3%
program-1%

jpeg 5%
xml 2%
mpeg -1%
html 3%
pdf 3%
source 3%

Train Test
PDF

optimizing
compiler

Instrumenting
compiler

Profile(C)

January 21, 2007 Paul Berube 29

doc 1%
doc -3%
html 3%
html 5%
jpeg 5%
jpeg 4%
mpeg -1%
mpeg 1%
pdf 3%
pdf 4%
program 1%
program 2%
source 3%
source 4%
text 5%
text 4%
xml -1%
xml 2%

Example – Evaluate

Average: 2.33

January 21, 2007 Paul Berube 30

Example – Evaluate

Average: 2.33

Std. Dev: 2.30

doc 1%
doc -3%
html 3%
html 5%
jpeg 5%
jpeg 4%
mpeg -1%
mpeg 1%
pdf 3%
pdf 4%
program 1%
program 2%
source 3%
source 4%
text 5%
text 4%
xml -1%
xml 2%

January 21, 2007 Paul Berube 31

Example – Evaluate

Average: 2.33

Std. Dev: 2.30

PDF improves performance:
• 2.33±2.30%, 17 times out of 25
• 2.33±4.60%, 19 times out of 20

doc 1%
doc -3%
html 3%
html 5%
jpeg 5%
jpeg 4%
mpeg -1%
mpeg 1%
pdf 3%
pdf 4%
program 1%
program 2%
source 3%
source 4%
text 5%
text 4%
xml -1%
xml 2%

January 21, 2007 Paul Berube 32

Example – Evaluate

PDF improves performance:
• 2.33±2.30%, 17 times out of 25
• 2.33±4.60%, 19 times out of 20

(peak_pdf > peak_static)?
(new_pdf > other_pdf)?

Depends on
mean and

variance of
both!

January 21, 2007 Paul Berube 33

 Pieces of Effective Evaluation

• Workload of inputs
• Education about input selection

– Rules and guidelines for authors

• Adoption of a new methodology for PDF
evaluation

January 21, 2007 Paul Berube 34

Practical Concerns

• Benchmark user
– Many additional runs, but on smaller inputs
– Two additional program compilation

• Benchmark author
– Most INT benchmarks use multiple data, and/or

additional data is easily available
– PDF input set could be used for REF

January 21, 2007 Paul Berube 35

Conclusion

• PDF is here: important for compilers and
architecture, in research and in practice

• The current methodology for PDF evaluation
 is not reliable

• Proposed a methodology for meaningful
evaluation

January 21, 2007 Paul Berube 36

Thanks

Questions?

