
Measuring the Performance of Multithreaded Processors

Javier Vera1, Francisco J. Cazorla1, Alex Pajuelo2, Oliverio J. Santana3, Enrique Fernandez3, Mateo Valero1,2

1Barcelona Supercomputing Center, Spain.{javier.vera,francisco.cazorla}@bsc.es
2DAC, Universitat Politècnica de Catalunya, Spain.{mpajuelo,mateo}@ac.upc.edu.

3Universidad de Las Palmas de Gran Canaria, Spain.{ojsantana,efernandez}@dis.ulpgc.es

Abstract— Nowadays, multithreaded architectures are be-
coming more and more popular. In fact, many processor
vendors have already shipped processors with multithreaded
features. Regardless of this push on multithreaded processors,
still today there is not a clear procedure that defines how to
measure the behavior of a multithreaded processor.

This paper presents FAME, a new evaluation methodology
aimed to fairly measure the performance of multithreaded
processors. FAME can be used in conjunction with any of
the metrics proposed for multithreaded processors like IPC
throughput, weighted speedup, etc. The idea behind FAME
is to reexecute all threads in a multithreaded workload until
all of them are fairly represented in the final measurements
taken from the workload. Then these measurements will be
combined with the corresponding metric to obtain a final
value that quantifies the performance of the processor under
consideration.

I. I NTRODUCTION

Thread-level parallelism has become a common strategy
for improving processor performance. Since it is difficult to
extract more instruction-level parallelism from a single pro-
gram, multithreaded processors rely on using the additional
transistors to obtain more parallelism by simultaneously
executing several programs. This strategy has led to a
wide range of multithreaded processor architectures like
SMT [4][8], CMP, or combinations of both. Currently,
many of the main processor vendors have some multi-
threaded processor. Some examples are the Intel Pentium
4 [3] that is a dual-threaded SMT, the IBM Power5 [5]
that is a dual core processor where each core is a 2-context
SMT, and the Sun Niagara T1 [11] that has eight 4-context
fine-grain multithreaded cores.

A. The problem of evaluating multithreaded processors

In spite of the increasing trend to use truly parallel appli-
cations, they are still less common in current multithreaded
machines than single-threaded applications like SPEC
CPU [12]. Therefore, computer architecture researchers
frequently evaluate their proposals for multithreaded ar-
chitectures using workloads composed by single-threaded
applications, i.e. SPECrate consists on executing simultane-
ously several copies of the same benchmark. Furthermore,
it is interesting to notice that for fully evaluating a wide
range of scenarios, workloads composed by benchmarks
with different behaviors should be used.

Working with several different programs running simul-
taneously involves an important decision, that is, to deter-
mine when the execution of the multi-program workload
will finish. In a single-threaded processor, the full program

is ran until completion. However, it is not so easy in a
multithreaded processor running a workload composed by
several programs. Applications in a workload can execute
at different speeds due to the different features of each
one, as well as the availability of the shared resources in
the processor. Therefore, the usual case is that they do not
complete execution at the same time.

We will explain this fact with an example. Let us
assume an M-context multithreaded processor executing
a 2-program workload (being M greater than or equal to
2). The execution of this workload occurs as depicted in
Figure 1. Both applications execute at different speeds
and thus they do not have to finish at the same time.
Therefore, we can divide the execution of the workload
into two phases. Firstly, there is amultithreaded period in
which both applications are being executed. Secondly, after
the first application finishes (Application 0 in Figure 1),
there is asingle-threaded period in which the remaining
application executes alone until completion. If the mul-
tithreaded period is too short, then the potential of the
multithreaded processor is only exploited during a small
interval of time. As a consequence, thetotal execution
time may become an inaccurate metric for multithreaded
processors. For instance, in an Intel Pentium 4 processor
running all 2-thread combinations from SPEC2000 (see
details in Section 4), the single-threaded periods represent,
on average, 40% of the total execution time.

Applic. 0

Applic. 1

Multithreaded

period (MTp)

time

Singlethreaded

period (STp)

App0 ends its

execution

Fig. 1. Example of the execution of a 2-program workload in a
M-context multithreaded processor (M ≥ 2).

In general, the execution of an N-program workload
involves N periods of N, N-1, N-2,. . . and 1 program
respectively. A common characteristic of all the evaluation
methodologies we have analyzed is that only measurements
obtained from the period with N running applications are
representative. Periods having less running applications
than the maximum available should not be taken into ac-
count since the results could be inaccurate and misleading.

2

B. Proposed Solutions

In order to quantify the behavior of multithreaded
processors, severalmethodologies and metrics have been
proposed. Metrics for measuring the performance of a
processor compute a value (result) for each workload that
quantifies the performance of that processor when running
the workload. This value is based on two inputs. On the
one hand, the IPC achieved by each program in the work-
load, which we call (IPCMT1

, IPCMT2
, . . . IPCMTN

) for
a workload of N applications. On the other hand, the
IPC of each program when it is run in isolation, which
we call (IPCalone1

, IPCalone2
, . . . IPCaloneN

). Thus, a
metric is a functionf (IPCMTi

, IPCalonei
) where 0 ≤

i ≤ N . For example, the IPC throughput is defined
as

∑N

i=1
IPCMTi

, the weighted speedup [6] is de-
fined as 1

N

∑N

i=1
(IPCMTi

/IPCalonei
), and the harmonic

mean [2] asN ×

(

∑N

i=1
IPCalonei

/IPCMTi

)

−1

.
A methodology defines when the measurements for a

given workload execution are taken. In this paper, we
analyze several methodologies that have been used during
the last years to measure the performance of both real
multithreaded processors and simulated multithreaded pro-
cessors. The main task of a methodology is to determine
when the programs in a workload have to finish. We will
show that previous methodologies cannot ensure that every
benchmark is fully represented, and thus it is not possible
to assure that the measurements obtained are representative
of the whole program.

To face this problem, we present FAME, a new sim-
ulation methodology for the evaluation of multithreaded
processors. Our methodology aims to ensure that every
program in a workload is executed, allowing to do fair
comparisons between different techniques and processor
setups. As a case study, we have selected to apply FAME
to a real SMT processor (Intel Pentium 4). However,
FAME can be applied also to simulation environments
and any other multithreaded processors. Our results show
that FAME provides more accurate measurements than
previously used methodologies.

II. CURRENT METHODOLOGIES

In order to fairly evaluate the performance of an SMT
processor, measurements should be obtained while all
programs in a given workload are running. However, the
programs in a workload can be executed at different speeds,
and thus they do not have to finish at the same time. Conse-
quently, the evaluation methodology should determine what
to do whenever any program finalizes its execution. Current
simulation methodologies can be classified as follows:

The First methodology finalizes the simulation of a
workload when any program of the workload ends its
execution [1]. The main drawback of this methodology is

that only one program in the workload is executed until
completion, and thus it cannot be ensured that the remain-
ing programs execute completely, losing representativityin
the final result.

The Last methodology finalizes workload simulation
when all the programs have been run until completion.
When any program ends, excluding the last one, it is
reexecuted [10] while the other programs are still execut-
ing. The main drawback of this methodology is that the
total number of evaluated instructions can vary from an
evaluation to another one. Since the execution speed of the
different programs depends on the processor parameters,
any variation can cause all programs to be executed at
different speeds. As a consequence, it cannot be ensured
that the amount of executed instructions is the same for
different simulations with different parameter values, and
thus comparisons between them may be inaccurate.

TheFixed Instructions methodology is based on the idea
of executing the same amount of instructions in every
simulation. The simulation finalizes whenever the total
number of executed instructions reaches a fixed threshold.
This threshold is usually determined per program, that is,
the simulation of a workload with N programs will finalize
when the total number of executed instructions is N times
the threshold. However, the Fixed Instructions methodology
is also unable to ensure that a representative part of every
benchmark is being executed, since workload simulation
ends in an arbitrary point (whenever the total number of
executed instructions is reached). Even worse, despite the
total number of instructions is the same, the mix of executed
instructions may change.

To show the behavior of current evaluation methodolo-
gies, we analyze these three methodologies. Without lost
of generality, we have used a multithreaded simulator to
collect information about these methodologies. Our simu-
lator is a fairly parametrized 2-thread SMT processor. We
implemented the methodologies First (F), Last (L), and
Fixed Instructions (I). We analyze three versions of the
latter: 200-million fixed instructions (I2), 400-million fixed
instructions (I4), and 800-million fixed instructions (I8).

Figure 2 shows the obtained results for these methodolo-
gies using our SMT simulator setup and a 2-thread work-
load composed by the benchmarksperlbmk and gap. The
simulation ends when both programs have executed at least
twice. We provide data for two well-known fetch policies:
icount [8] and stall [9]. Icount, in Figure 2(a), prioritizes
those programs with fewer instructions in the processor
pipeline. The stall fetch policy, in Figure 2(b), uses the
same heuristic, but it also detects when a program has a
pending long-latency memory access. When this situation
is detected, stall prevents the program from fetching more
instructions until the memory access is resolved, avoiding
unnecessary over-pressure over the shared resources.

3

0

1

2

3

4

5

6

7

8

1.
0E

+
00

5.
0E

+
02

1.
0E

+
03

1.
5E

+
03

2.
0E

+
03

2.
5E

+
03

3.
0E

+
03

3.
5E

+
03

4.
0E

+
03

4.
5E

+
03

5.
0E

+
03

Time (cycles)

IP
C

gap perlbmk AvgThroughput(x)

F LI4 I8I2

T0-1 T0-2T1-1 T1-2

0

1

2

3

4

5

6

7

8

1.
0E

+
00

5.
0E

+
02

1.
0E

+
03

1.
5E

+
03

2.
0E

+
03

2.
5E

+
03

3.
0E

+
03

3.
5E

+
03

4.
0E

+
03

4.
5E

+
03

5.
0E

+
03

Time (cycles)

IP
C

gap perlbmk AvgThroughput(x)

F LI8I2 I4

T0-1 T0-2T1-1 T1-2 T1-3 T1-4

(a) Results with icount (b) Results with stall
Fig. 2. IPC ofgap and perlbmk when executed together on the SMT simulator.

In Figure 2, the y-axis shows processor performance
(IPC) and the x-axis represents execution time. The light-
gray bars show the instant IPC ofgap. Likewise, the dark-
gray bars show the instant IPC ofperlbmk (To obtain the
instant IPC we use a sampling period of 15K cycles). In
every sample, the sum of both bars represents the instant
throughput,i.e, the sum of the instant IPC of both programs.
The black horizontal line represents the average instant
throughput until a time instant, that is, the average value of
the instant throughput for every cycle from the beginning of
the workload execution until the current time instant. The
white circles over the black line show the final throughput
reported by every methodology and the vertical solid lines
show the cycle in which the workload simulation ends
according to each experimental methodology. Finally, the
vertical dashed lines show the time instant at which every
instance of a program finishes. Above each line we add a
legend in the formTx− y, wherex indicates the program
andy the number of times a programx has been executed.

The main observation that can be drawn from Figure 2
is that every methodology provides different throughput
values. It is summarized in the second (icount) and third
(stall) rows of Table I(a). It should be taken into account
that researchers use simulation to evaluate the performance
of a design enhancement relative to a baseline design. In
the experiment of Figure 2, we measure the performance
improvement of stall with icount as baseline (shown in
the last row of Table I(a)). Although stall improves the
performance of icount for all methodologies, the speedup
varies depending on the methodology used. If theI2
methodology is used, stall only achieves 13% performance
improvement. But if measurements are taken using theI8
methodology, the performance improvement arises to 53%.
That is, depending on the evaluation methodology the stall
improvement over icount varies up to 40%. Such a wide
range of variation makes difficult to estimate the impact of
any proposal and may cause misleading conclusions when
a multithreaded processor enhancement is evaluated.

TABLE I

BEHAVIOR OF CURRENT METHODOLOGIES.

Methodology→ I2 I4 F L I8

IPC Throughput icount 3.2 3.5 3.5 2.4 2.6
IPCgap + IPCperl stall 3.7 4.0 4.1 3.4 3.9

stall Improvement(%)→ 13.1 15.1 18.2 41.8 53.0

(a) Improvement of stall over icount using different methodologies.

Th. Methodology
I2 I4 F L I8

Number of full T0 0 0 0 1 1
executions T1 0 0 1 1 1

% of instructions T0 26 61 82 0 60
(current execution) T1 36 75 0 63 77

(b) number of full executions and percentage
of instructions executed of the current execution

As discussed in previous sections, this problem is due
to the fact that current methodologies cannot ensure fully
representativity of every program of the workload, which
can lead to unfair comparisons between different processor
setups. For example, if we want to compare the effect of the
L2 cache, which can be deactivated through the BIOS, in a
Pentium 4 or if we want to determine the real performance
improvement of the SMT capability of the Pentium 4.

Table I(b) summarizes these drawbacks by showing the
number of times every program is completely executed and
the percentage of instructions executed in the last repetition
for each methodology when using the stall fetch policy
(results for icount are similar). The number of executed
instructions varies from one evaluation methodology to
another one. For example, in the case of theI8 methodol-
ogy, T0 executes once completely and then executes 60%
instructions from a second repetition. The same happens
with T1, but in this case the percentage of instructions
executed in the second repetition is 77%. Another example
is the L methodology: T0 executes once and T1 execute
once and 63% of the second repetition. This data clearly
shows that the mix of instructions in every case is different,
and thus, any comparison done may be misleading.

We made a similar experiment on our real processor

4

F L I4I2

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Time (seconds)

IP
C

Total Throughput AvgThroughput(x)

T0-1 T1-1 T0-2 T1-2

Fig. 3. IPC ofgap and gcc when run together on an Intel Pentium 4

TABLE II

NUMBER OF FULL EXECUTIONS AND PERCENTAGE OF INSTRUCTIONS

EXECUTED OF THE CURRENT EXECUTION

Program Methodology
number I2 F L I4

of full T0 0 1 1 1
executions T1 0 0 1 1

% of current T0 56 0 19 24
execution T1 48 84 0 4

environment, obtaining the same trends. Figure 3 shows
the performance throughput of thegcc andgap benchmarks
when they are executed together on a Pentium 4 processor.
The light-grey bars show instant throughput, that is, the sum
of the instant IPCs of both benchmarks. The real throughput
value varies depending on the used methodology. The
lowest value is 0.8 (L and I4 methodologies) and the
highest value is 0.85 (I2 methodology), which shows that
using different methodologies involves obtaining different
results. Table II(b) summarizes the drawbacks of current
evaluation methodologies for the Pentium 4 environment.
It shows the number of times each program has been
completely executed and the percentage of instructions
executed in the current repetition. As in the previous case
the total amount of executed instructions varies from one
evaluation methodology to a different one and the mix of
instructions is different.

III. T HE FAME METHODOLOGY

Current simulation methodologies do not ensure that all
programs in a workload are faithfully represented in the
simulation results. To alleviate this problem, we propose
a new methodology called FAME. The main objective of
our methodology is to obtain representative measurements
of the actual processor behavior. In doing so, FAME de-
termines how many times a program in a workload should
be reexecuted for being faithfully represented. In order to
determine it, FAME analyzes the behavior of every trace
in isolation. In this paper we assume that the behavior
of each program in a workload executed in multithread

mode remains similar to the behavior in single-thread mode
because the code signatures do not change. Notice, that if
this assumption does not hold incurred errors will be high.

Depending on the particular methodology features, the
execution of each program in a workload may be stopped
at any point and the IPC value provided by the methodology
will be the average IPC value until that point. This average
IPC would be fully representative of the program execution
if it is similar to the final IPC value, that is, the average IPC
value at the end of the whole program execution. Hence,
FAME forces each program to be executed enough times so
that the difference between the obtained average IPC and
the final IPC is below a particular threshold.

The basis of FAME can be better explained using a
synthetic example. Light-grey bars in Figure 4(a) show the
instant IPC of our synthetic application, that is, the IPC
on each particular cycle of its entire execution when run in
isolation. The black line shows the evolution of the average
IPC of the application along its execution. The average
IPC value for a given execution cycle is calculated as the
average value of the instant IPC from the beginning of
the program execution until that particular cycle. Thus, the
final IPC would be equal to the average IPC value at the
end of program execution. It is clear that the average IPC
converges towards the final IPC value.

Figure 4(b) shows the instant IPC and the average IPC
during three reexecutions of the application. In addition,
Figure 4(c) shows the difference between the average IPC
and the final IPC during the three reexecutions. It is clear
that the average IPC converges towards the final IPC
value. Even if that difference is a decreasing function, it is
important to note that it is not monotone. This means that
the difference would be very small in a given cycle, but it
may increase again in the subsequent cycles. Therefore, if
the goal is to obtain representative measurements, program
execution cannot be stopped at any point.

One could think that the solution is to finalize program
execution when a full application repetition has been ex-
ecuted, since the average IPC is always equal to the final
IPC at the end of any repetition. However, a multithreaded
processor is able to execute more than one application at
once. Although execution can be stopped at the end of a
repetition for one of the programs, it is likely that this
point is not the end of a repetition for the other programs,
and thus the other programs could be not accurately rep-
resented. The actual solution comes from the observation
that, although the difference between the average and the
final IPC does not decreases monotonically, the maximum
difference in a reexecution is lower for each new executed
repetition. That is, it is a decreasing monotone function.
Thus, if we execute enough repetitions of a program, the
maximum difference will reach a value small enough to
consider that the average IPC is representative of the full

5

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
time (cycles)

IP
C

Instant IPC, IPC(x)
Instant Average IPC, IAI(x)

Final IPC Value (FAI)
0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3

Cycles in each repetition/Repetitions

IP
C

IPC (x) IAI (x)

Repetition 1 Repetition 2 Repetition 3

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3

Cycles in each repetition/Repetitions

(I
A

I(
x)

-A
vg

IP
C

)/
A

vg
IP

C
 (

%
)

D
iff

M
ax

1

D
iff

M
ax

2

DiffMax3
CycMax1

CycMax3

CycMax2

(a) IPC (x) (b) IPC during repetitions (c) Diff (%) during repetitions

Fig. 4. Instant IPC, average IPC, anddifference between both of a synthetic program during 3 repetitions.

benchmark behavior. For this reason, our methodology
reexecutes all programs several times, until the difference
is upper-bounded by a given threshold.

Figure 4(c) shows the difference between the average
and the final IPC as our synthetic program is reexecuted.
The highest difference values are obtained in the first
repetition due to the cold-start IPC calculation of the
program. The difference decreases along with the program
execution, reaching zero when the first repetition finishes.
The difference is always zero at the end of every program
repetition, since the average IPC is always equal to the final
IPC at those points. It can be observed in Figure 4(c) that
the IPC behavior of the first repetition is not representative
of the IPC behavior in following repetitions due to the cold-
start effect. For this reason, we discard the first repetition.
It can also be observed that the difference between the
average and the final IPC presents similar behavior for all
repetitions excluding the first one. Indeed, the instruction
and the cycle in which the difference achieves its higher
value is always the same for all repetitions.

The first step to apply FAME is to run two repetitions of
every program in isolation. Periodically, we sample the IPC
of the application obtaining the IPC during execution. From
this information we obtainCycleMax2 and InstMax2,
and compute the number of re-executions(i) required to
satisfy a given MAIV. Table III shows the minimal number
of repetitions required per benchmark with MAIV values
ranging from 20% to 1%. Once the minimal number of
repetitions are obtained, workload simulations can begin.

Workload simulation will not finalize until every program
in the workload has been executed, at least, as many times
as the minimal number of repetitions required for accurate
representativity. If any program reaches this minimal num-
ber of repetitions before the rest of the programs, it will
reexecute once and again until all programs fulfill their
requirements. This is not a problem for representativity,
since the maximum difference between the average and
the final IPC can only decrease. When all programs have
been reexecuted at least the corresponding minimal number
of times, workload execution can be stopped at any point,
since we can ensure that the results are representative.

TABLE III

NUMBER OF REPETITIONS REQUIRED FOR EVERYSPEC2K

BENCHMARK ON THE INTEL PENTIUM 4.

Bench. MAIV(%)
Name 20 10 5 2 1

bzip2 1 1 1 2 3
crafty 1 1 1 1 1
eon 1 1 1 1 1
gap 1 1 1 2 5
gcc 1 1 2 3 7
gzip 1 1 1 1 3
mcf 1 1 2 5 9
parser 1 1 1 1 1
perl. 1 1 3 4 8
twolf 1 1 1 1 1
vortex 1 1 1 1 1
vpr 1 1 2 5 10

Bench. MAIV(%)
Name 20 10 5 2 1

ammp 1 1 1 2 3
applu 1 1 1 1 1
apsi 1 1 1 1 1
art 1 1 1 1 1
equake 1 1 2 4 7
facerec 1 1 1 1 1
fma3d 1 1 1 1 1
galgel 1 1 1 1 1
lucas 1 1 1 1 1
mesa 1 1 1 1 1
mgrid 1 1 1 1 1
sixtrck 1 1 1 1 1
swim 1 1 1 1 1
wupwise 1 1 1 1 1

(a) Spec CPU INT (b) Spec CPU FP

IV. A NALYSIS OF EVALUATION METHODOLOGIES

To evaluate FAME in a real processor we use a 3GHz
Intel Pentium 4 processor (model 531) with Hyperthreading
Technology and 512 MBytes of DDRAM at 400 Mhz. The
operating system is a Fedora Core 3 with gnu Linux kernel
2.6.11 patched with perfctr-2.6.18 to allow the access to the
performance monitoring counters from any privilege level
of execution. The operating system is booted at runlevel 1
to reduce as much as possible the interferences generated by
multiuser-multitasking processing. Video, audio and com-
munication hardware capabilities are disabled. Gcc 3.4.2
and the Intel Fortran Compiler 9.0 were used to compile the
whole SPEC2000 benchmark suite with all optimizations
enabled. Benchmarks are executed until completion with
the standard reference input set. The SMT workloads were
generated with all the possible combinations of 2 applica-
tions from SPEC2K, leading to 351 2-thread combinations.

In order to correctly measure the performance of a
multithreaded processor, it would be desirable that the
baseline performance is obtained with the measurements
taken when the processor reaches asteady state because,
in this state, the variation of performance is negligible.
We measured that the steady state is reached when every
program is reexecuted, at least, 20 times in a workload.
Following reexecutions do not affect the results.

We measure per-thread IPC. If per-thread IPC is accurate,
our FAME methodology can be used to study any metric,
like throughput, weighted speedup or harmonic mean, since

6

83
74

95

48
37 37

24
10 4

-38 -37 -39 -34
-23 -23 -17

-9 -5

-60

-40

-20

0

20

40

60

80

100

200 400 20% 10% 5% 2% 1%

First Last Fixed Instructions
(billions)

FAME (Max. Allowable IPC Variation)

Methodology

D
if

fe
re

n
ce

 w
.r

.t
. s

te
ad

y
st

at
e

(%
)

Fig. 5. Error of the different methodologies for the Pentium4 processor

per-thread IPC is the only variable parameter used to
compute these metrics. We calculate the error of every
thread in a workload for every methodology using the next
formula, in whichTiIPCsteady state is the IPC of threadi
for the baseline, andTiIPCmethodology is the IPC of thread
i reported by the methodology under study.

ErrorTi =
TiIPCsteady state − TiIPCmethodology

TiIPCsteady state

(%)

FAME is the methodology with the lowest error as
shown in Figure 5. The worst results come from the 200-
billion instruction methodology (errors range from 95% to
-39%). There is a clear trade-off between the number of
instructions a methodology executes and the error it obtains.
Ideally, we would like to have a methodology that requires
executing few iterations, while leading to a reduced error.
Regarding this topic, lowest MAIV errors are achieved by
an affordable execution time increase. For instance, the
execution time for MAIV 20% and 10% is the same that
in the Last methodology. MAIV 5%, 2% and 1% increase
the execution time by 5.3%, 9.6% and 15,2% respectively.

Finally, note that the error of a methodology is inde-
pendent of the metric used. Even if some metrics, like
weighted speedup, are used to providefairness, the results
of these metrics depend on the accuracy of measurements.
If measurements are wrong the results obtained by a metric
are likely wrong.

V. RELATED WORK AND CONCLUSIONS

Choosing an accurate evaluation methodologies is crucial
for measuring the performance of multithreaded processors.
For instance, The IBM Power5 (2 cores and 2-threads per
core) was evaluated using 4-thread workloads containing
the same application replicated four times [5]. Since all the
threads in the workload are the same program, they finalize
execution almost simultaneously, which means that the
error is negligible regardless the evaluation methodology
used. We have found that, when we execute workloads
containing a single program replicated several times, the
duration of the single-threaded period is negligible, 0.03%).
However, using just this type of workload limits the variety
of the analysis and the evaluation that can be done. FAME

could allow evaluating the Power5 processor using any
arbitrary workload, since it is a more general methodology.

Another evaluation of a real SMT processor is presented
in [7], where heterogeneous workloads are executed 12
times to guarantee, at least, 3 complete executions of a
thread of every job. It is not explained how the number of
repetitions are obtained and, since this number depends on
both the simulator setup and the number and mix of threads
in every workload, this methodology cannot be extrapolated
to other environments. The point of FAME is that we can fix
a priori the minimal number of repetitions per benchmark
in a workload to ensure the correctness of measurements.

FAME achieves better accuracy than previously pro-
posed evaluation methodologies, such as First, Last, and
Fixed Instructions. In addition, any metric can use the
measurements obtained with FAME, since a methodology
just dictates how to take measurements and not how to
use them. Even more, since the main difference among
multithreaded designs is the amount of shared resources,
all of them present the same evaluation problems, making
FAME directly applicable to SMT processors, CMP proces-
sors, and even CMP/SMT processors in both real scenarios
(as presented in this paper) and simulation scenarios (an
architectural simulator is used instead of a real processor).

ACKNOWLEDGEMENTS

This work has been supported by the Ministry of Science
and Technology of Spain under contract TIN-2004-07739-
C02-01, the HiPEAC European Network of Excellence. The
authors would like to thank Jaume Abella and Beatriz Otero
for their technical comments.

REFERENCES

[1] F. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. Dynamically
controlled resource allocation in SMT processors.MICRO, 2004.

[2] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and
fairness in SMT processors.ISPASS, 2001.

[3] D. T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A. Miller,
and M. Upton. Hyper-threading technology architecture andmicroar-
chitecture.Intel Technology Journal, 6(1), 2002.

[4] M. J. Serrano, R. Wood, and M. Nemirovsky, A Study on Multi-
streamed Superscalar Processors.Technical Report 93-05, University
of California Santa Barbara, 1993.

[5] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,and J. B.
Joyner. POWER5 system microarchitecture.IBM Journal of Research
and Development, 49(4/5):505–521, 2005.

[6] A. Snavely and D.M. Tullsen and G. Voelker. Symbiotic Job
Scheduling with Priorities for a Simultaneous Multithreaded Proces-
sor. SIGMETRICS 2002.

[7] N. Tuck and D. M. Tullsen Initial Observations of the Simultaneous
Multithreading Pentium 4 Processor PACT 2003

[8] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In23rd ISCA, 1996.

[9] D. Tullsen and J. Brown. Handling long-latency loads in asimulta-
neous multithreaded processor. InMICRO, 2001.

[10] T. Y. Yeh and G. Reinman. Fast and fair: data-stream quality of
service.Proceedings of CASES, 2005.

[11] http://opensparc-t1.sunsource.net/
[12] http://www.specbench.org/.

