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Abstract— We present a benchmark for evaluating the perfor-
mance of Sparse matrix-dense vector multiply (abbreviated as
SpMV) on scalar uniprocessor machines. Though SpMV is an
important kernel in scientific computation, there are currently
no adequate benchmarks for measuring its performance across
many platforms. Our work serves as a reliable predictor of
expected SpMV performance across many platforms, and takes
no more than five minutes to obtain its results.

I. INTRODUCTION

Sparse matrix-dense vector multiply (SpMV) is a common
operation in scientific codes. It is especially prevalent in
iterative methods to solve linear systems. Given this, it would
be very convenient for consumers to have a convenient way
of knowing which machine to buy for their calculations, and
for vendors to know how well their machines perform.

There are currently no convenient ways for vendors to know
how well their machines perform SpMV. The current standard
method for ranking computers’ ability to perform scientific
compuatations, the Top 500 List [9], uses only the LINPACK
benchmark [8]. LINPACK measures the speed of solution of
a system of linear equations, which is not representative of
all the operations that are performed in scientific computing.
There is a benchmark suite under development called the High
Performance Computing Challenge Suite (HPCC) that seeks
to remedy this [5]. The HPCC suite contains benchmarks that
seek to measure computers’ performance in performing several
different operations, including LINPACK.

The benchmark we will present here is proposed for inclu-
sion into this suite, as none of the other benchmarks in it are
suited for approximating the performance of SpMV. We will
see why in the next section. One requirement for inclusion in
the HPCC suite is a short run-time, which explains our goal
of running in five minutes.

II. APPROXIMATING SPMV PERFORMANCE

A critical difference between SpMV and other operations
benchmarked in the HPCC suite is that the performance of
SpMV depends strongly on the data, i.e. the size and nonzero
pattern of the sparse matrix. Since practical sparse matrices
do vary widely in these properties, this means that existing
benchmarks will not be predictive of SpMV performance, and
that we will need to time SpMV itself on a representative set
of test matrices.

Furthermore, as machines grow in capacity over time, no
fixed set of test matrices would be adequate to test perfor-
mance. For example, a matrix so large that it cannot be stored
in cache on today’s platforms (an important size to test) may
well fit in cache in a few years. This would make SpMV
appear to run at a much higher fraction of peak performance,
and be unrepresentative of practical problem sizes, which will
also grow over time. This, combined with the sheer size of
a collection of fixed test matrices, means we will have to
generate appropriate test matrices on the fly that appropriately
approximate practical sparse matrices.

Finally, SpMV performance can vary significantly depend-
ing on small changes in the data structure used to store
the matrix, and in the corresponding algorithm that accesses
it to implement SpMV. Just as the LINPACK benchmark
depends on tuned BLAS for a true assessment of a machine’s
performance, we also need to engage in a reasonable level
of tuning effort. To make this portable, fast and fair (in the
sense that a similar level of machine-dependent and matrix-
dependent tuning is done whenever the benchmark is used),
we will rely on the OSKI automatic tuning system [11].

Now we explain the above points in more detail.
The main reason different matrix sizes and nonzero patterns

impact the performance of SpMV is that they lead to different
memory access patterns. Since only the nonzeros (and their
locations in the matrix) are stored, memory accesses cannot
all be unit-stride. Typically the matrix is still streamed through
in unit stride, but the vector it multiplies (the source vector) is
accessed indirectly. Our experiments lead us to propose using
four matrix properties to characterize practical matrices, and
to generate corresponding test matrices on the fly: size (total
memory for the matrix and source vector), density (average
number of nonzeros per row of the matrix), block size (can
the matrix be stored as a collection of dense r-by-c blocks for
some r > 1 and/or c > 1?), and “bandedness” (the distribution
of the distances of the nonzeros from the main diagonal).

We propose 3 categories of SpMV problem sizes:
• Small: everything fits in cache.
• Medium: the source vector fits in cache but the matrix

does not.
• Large: neither the source vector nor the matrix fit in

cache.
These different sizes lead to different memory traffic patterns
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values = [1, 2, 3, 4, 5, 6, 7, 8]

row start = [0, 2, 4, 6, 8]

col idx = [0, 1, 0, 2, 1, 3, 2, 4]

Fig. 1. The Compressed Sparse-Row Matrix Storage Format

TABLE I
PLATFORMS TESTED

Pentium 4 Itanium 2 Opteron

Speed 2.4 GHz 1 GHz 1.4 GHz

Cache 512 KB 3 MB 1 MB

Compiler gcc 3.4.4 icc 9.0 gcc 3.2.3

and different performance. Performance typically peaks for a
given density for small or medium sizes, and gradually falls
off as the problem dimension increases. Figures 3(a), 4(a),
and 5(a) show this behavior in data gathered from running
SpMV on a set of 275 matrices taken from the online col-
lection [3]. Each circle is a test matrix, with its x-coordinate
equal to its dimension, y-coordinate equal to its density, and
color coded by speed in MFLOP/s. Dark lines separate the
small, medium and large matrices. The selected matrices are
listed in [6]. No performance tuning has been done on these
matrices. The compressed sparse-row (CSR) format, is used
for storing the matrices because it was found in [10] to be the
best general-purpose unoptimized sparse matrix storage format
across multiple platforms. An example of this format is seen
in Figure 1. The nonzero entries are stored in the values
array, the index of each entry that starts a new row is stored
in the row start array, and the column each entry belongs
to is stored in the col idx array. Data was obtained on the
platforms in Table I.

None of the other benchmarks in the HPCC suite use
indirect accesses that would let us predict the performance
shown here. Indeed other research [6], [10], [12] has shown
them to be unreliable as benchmarks for SpMV. [10] and [12]
also looked at two other approaches for benchmarking SpMV.
One was to develop performance bounds. The bounds served
as very reliable upper and lower bounds across multiple
platforms, but could not offer any hints as to what the expected
performance would be on them. Another approach was to
use “machine balance”, but it was also inadequate on some
platforms.

This motivates us to benchmark SpMV by performing
the actual operation. There are three existing benchmarks
that do this [1], [4], [7], but do not meet our goals. [7]
and [4] do not measure the performance of any performance


1 0 2 3 0 0
0 4 5 0 0 0
0 0 0 0 6 7
0 0 0 0 8 9


values = [1, 0, 0, 4, 2, 3, 5, 0, 6, 7, 8, 9]

row start = [8, 12]

col idx = [0, 1, 2]

Fig. 2. The Blocked Compressed Sparse-Row (BCSR) matrix storage format.

optimizations. [1] allows for performance optimizations, but
they must be user-supplied. It also does not measure solely
SpMV performance; rather, it measures the performance of the
conjugate gradient operation, which is very rich in SpMV but
also contains dense vector updates and outer products. Also [1]
uses a single kind of random matrix that is not representative
of many practical matrices.

Now we consider block-sizes and performance tuning. Some
sparse matrices, particularly those arising from finite element
applications, have a natural block structure that can be ex-
ploited to improve performance. Others do not have such
a structure and are only suited to being run without such
optimizations.

We use the register blocking optimization [10] to measure
optimized SpMV performance, as it was found in [10] to be the
the most widely applicable of all the possible optimizations,
and it is implemented in an automatic tuning system [11]. This
requires us to use the blocked compressed sparse-row matrix
storage format, which is illustrated in Figure 2 using 2 × 2
register blocks that are color-coded for clarity. The difference
between BCSR and CSR is that in BCSR, the blocks are stored
contiguously, the row start array says which element starts
the next block row, and the col idx array says which block
column each block belongs to. In general, it is possible to have
blocks of an arbitrary blocksize r × c. Different blocksizes
work best with different matrices on different machines. The
problem of which one is best is addressed in detail in [10].

Figures 3(b), 4(b), and 5(b) show that register blocking
SpMV on the matrices from the test suite yields different
speedups on each of the platforms tested, highlighting the
importance of measuring tuned in additioned to untuned
SpMV. Register blocked performance data was obtained using
the OSKI automatic tuning system [11].

Finally, we consider bandedness. By examining many prac-
tical sparse matrices, we find that many of them exhibit a
somewhat banded structure in the following sense: a large
fraction of the nonzeros in any row are located relatively close
to the diagonal, as measured as the percentage of entries that
lie in bands 10(i− 1) to 10i percent away from the diagonal,
where 1 ≤ i ≤ 10). Figure II shows how we divide the
matrices into bands.

The statistics for each matrix in our test suite are given
in [6]. Ignoring this bandedness in generating random test
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Fig. 6. Matrix divided up into bands. For simplicity of illustration, this
matrix is only divided up into 5 bands instead of 10.

matrices tends to underpredict performance, so we generate
our matrices to match the statistics in [6].

Randomly generated matrices matching all these criteria do
a reasonably good job approximating the performance of the
real-life matrices they were created to model, as Figures 8–10
show. In these plots, each real matrix is represented by an R,
and is connected by a line to its synthetic counterpart, which
is represented by an S. The tuned plots are color-coded by
largest blocksize dimension.

One thing to note is that while a number of the matrices
in our test suite are symmetric, the matrix generator we use
does not generate symmetric matrices. To generate data from
which we could accurately gauge how well the synthetic
matrices performed, we ran the symmetric matrices from our
test suite with symmetry disabled. We will return to the issue
of symmetry in the last section.

III. THE BENCHMARK

We will now use what we have developed in the past two
sections to construct a benchmark for SpMV. Our first task is
to define the set of matrices from which we will take data.
The test suite we used in the previous section has dimensions
ranging from 512 to nearly a million, with densities ranging
from 1 to almost 400 nonzero entries per row. We will consider
square matrices of similar dimensions, but only ones that are
powers of two ranging from 29 to 220. The number of nonzero
entries per row will range within [24, 34] = 29±5, since 29 is
the average number of nonzero entries per row in the suite. The
distribution of nonzero entries will made to match statistics
taken from all of the matrices in the test suite, which are shown
in Table II. The register blocksizes for optimized SpMV will
come from the set {1, 2, 3, 4, 6, 8} × {1, 2, 3, 4, 6, 8}. These
were the blocksizes most commonly found in work in [10] that
used a set of test matrices for which tuning showed benefits.

We take SpMV data from these matrices and report as out-
put four MFLOP rates: unblocked maximum, unblocked me-
dian, blocked maximum, and blocked median. The unblocked
numbers are taken only from data gathered for matrices with
1 × 1 blocks, and represent the case of the real-life matrices
for which tuning was attempted but found to be of no benefit.
The tuned numbers are taken from the rest of the data, and
represent the case of the real-life matrices for which there
was a benefit to tuning. Through these numbers, we seek to

TABLE II
DISTRIBUTION OF NONZERO ENTRIES IN MATRIX TEST SUITE

Distance From Diagonal Entries In This Range

0-10% 65.9%

10-20% 11.4%

20-30% 5.84%

30-40% 6.84%

40-50% 2.85%

50-60% 1.86%

60-70% 1.44%

70-80% 2.71%

80-90% 0.774%

90-100% 0.387%

TABLE III
BENCHMARK RESULTS, FULL RUN

Unblocked Blocked

Max Median Max Median

Pentium 4 699 307 1961 530
Itanium 2 443 343 2177 753
Opteron 396 170 1178 273

capture best-case and expected-case performance. Figure 7,
which shows the performance of benchmark matrices within
our search space for two particular blocksizes on the Itanium
2, illustrates why we select these numbers.

With the max numbers, we are looking to capture peak
performance, and with the median numbers, we are looking to
capture performance when it levels off. When forced to report
one number, as required by the HPCC suite’s rules, we will
report the blocked median. Table III shows the output for the
three platforms tested.

Figures 11–13 show that the numbers, especially the median
numbers, give a good indicator of expected SpMV perfor-
mance. Table IV reassures us that we tested small, medium,
and large SpMV problems, and thus got a good set of data on
which to base our benchmark numbers.

However, each of these runs took over 2 hours. If we want
to cut this down, we will need to prune the test space run by
the benchmark in such a way that we can capture the same
data while running far fewer SpMV trials. Looking back at

TABLE IV
PROPORTION OF PROBLEM SIZES TESTED BY THE BENCHMARK, FULL

RUN

Pentium 4 Itanium 2 Opteron

Small 17% 33% 23%
Medium 42% 50% 44%
Large 42% 17% 33%



(a) Unblocked (b) 3x3 Blocks

Fig. 7. Performance of benchmark matrices on the Itanium 2.

Figure 7, here are two key observations:
1) For large problem dimensions, the performance hardly

changes with small fluctuations in nnz/row. This is not
the case for small problem dimensions.

2) The performance levels off for large problem dimen-
sions, so the statistics will hardly change if we drop the
very largest problem dimensions from the test space.

To help us handle the first observation, we introduce what
we call a threshold dimension. This is a problem dimension
below which we consider the task of creating a matrix and
performing SpMV with it to be “free.” Each register block size
for which we generate matrices will have its own threshold
dimension. All values of nnz/row are to be tested for problem
dimensions below the threshold dimension. Above it, we will
be free to cut out values as we see fit.

The actual decision of which parts of the search space to
cut out is made by a runtime estimator that first estimates
the runtime of the benchmark on the entire search space and
then cuts out certain parts of it until a user-specified time
constraint is satisfied, in our case five minutes. The estimation
is carried out by, for each register blocksize tested, running
an SpMV trial (both matrix generation and performing the
actual multiplication) for a matrix whose dimension is the
threshold dimension as defined above and then doubling this
value to obtain runtime estimates for running an SpMV trial
for each successive problem dimension in the test space. Here,
nnz/row is kept at the midpoint of the selected range. The
computed estimates are then added up, yielding an estimate
for the runtime of the entire benchmark.

The estimator then decides which elements of the search
space to cut using the following iteration:

1) Reduce the number of values of nnz/row to test by 1
and adjust the runtime estimate accordingly.

2) If the time limit is still exceeded, cut off the largest
dimension to be tested and go back to testing the full
nnz/row range, adjusting the estimate accordingly.

TABLE V
BENCHMARK RESULTS, 5 MINUTE RUN

Unblocked Blocked

Max Median Max Median

Pentium 4 692 362 1937 555
Itanium 2 442 343 2181 803
Opteron 394 188 1178 286

3) Repeat the previous two steps until the time limit is
satisfied.

In this way, the largest problem dimension tested is kept
as large as possible to ensure that the benchmark tests small,
medium, and large problems as defined in the previous section,
while still dramatically cutting down on the runtime, as we will
see shortly. First, though, we note that cutting out values of
nnz/row to test cuts out data points that we need to compute
our statistics, since the full nnz/row range is going to be
tested for problem dimensions below the threshold dimension.
To correct this problem, we refill the data points by either
duplication if we only test one nnz/row value or interpolation
if we test more than one. In the latter case, the endpoints of the
nnz/row range are required to be included among the nnz/row
values tested.

In the case of each of the three tested platforms, the
estimator reduced the maximum matrix dimension to 218 and
the number of nnz/row values to test to one for large enough
problems. Table V shows that this resulted in dramatic savings
in runtime while maintaining the accuracy of the data, Table VI
shows the runtime savings, and Table VII shows the proportion
of problem sizes tested by the shortened benchmark run. The
difference in max numbers between the full and abbreviated
runs, which would ideally be the same, fall within the bounds
of measurement noise.



TABLE VI
BENCHMARK RUNTIME COMPARISON

Runtime (original) Runtime (condensed)

Pentium 4 150 minutes 3 minutes
Itanium 2 128 minutes 3 minutes
Opteron 149 minutes 3 minutes

TABLE VII
PROPORTION OF PROBLEM SIZES TESTED BY THE BENCHMARK, 5

MINUTE RUN

Pentium 4 Itanium 2 Opteron

Small 20% 40% 27%
Medium 50% 60% 53%
Large 30% 0% 20%

IV. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

We have presented a benchmark that quickly and effectively
evaluates the fitness of different architectures for performing
SpMV. The benchmark runs in at most five minutes and gives
a good indicator of expected SpMV performnce on multiple
platforms. There are however substantial areas for future work.
These range from improving the benchmark itself to extending
it to new platforms.

A. Improving the Benchmark

The most obvious question about the benchmark right now
is the why the number it outputs for the tuned maximum
is so high. For all the platforms tested, it is too high when
compared with the performance of SpMV on real-life matrices.
Future work to address this problem is needed. Another area
where more work can be done is in the generation of synthetic
matrices. We have identified four parameters (size, density,
block-size, bandedness) that characterize the performance of
test matrices, bu there are still gaps in the ability of synthetic
matrices to model real-life ones, and closing these gaps will
help lead to a more accurate benchmark.

Another case the benchmark does not currently handle
explicitly is that of symmetric matrices. Many matrices from
real-life applications are symmetric. Figures 13–15 show that
our benchmark retains some predictive power when symmetry
is taken into account, but there are many symmetric matrices
for which it could do better. Thus, finding a way to integrate
symmetric matrices into the ones used by our benchmark to
run its trials would very much improve it.

B. Extending the Benchmark to New Platforms

Our benchmark currently only works on scalar uniprocessor
machines. These are not the only machines on which SpMV
is performed. Vector and parallel machines are also common
platforms on which SpMV is run, making a benchmark
designed for those kinds of architectures very useful. In the
case of vector machines, there are sparse matrix data structures

specifically created for them that should be used, such as
segmented scan [2]. So the benchmark can be extended to
vector machines by changing the data structure used for storing
sparse matrices to one that is optimized for vector machines.

In the case of parallel machines, many more issues come
into play. The matrix, instead of belonging to just one pro-
cessor, is instead distributed over many processors. This will
require a whole new benchmark, and one that will be sought
after by many, as the benchmarks in the HPCC suite expects
all of its benchmarks to have parallel versions [5].
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Fig. 8. Performance of synthetic vs. real matrices on the Pentium 4.
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Fig. 9. Performance of synthetic vs. real matrices on the Itanium 2.
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Fig. 10. Performance of synthetic vs. real matrices on the Opteron.
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Fig. 11. Performance of benchmark vs. real matrices on the Pentium 4.



0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Untunable, Itanium 2

(a) Benchmark vs. untunable real matrices

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Tuned, Itanium 2

median

max

small

medium

large

max(r,c) = 2         3         4         5         6         7         8         

(b) Benchmark vs. tuned real matrices

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Tunable 1x1, Itanium 2

(c) Benchmark vs. tunable real matrices run 1x1

Fig. 12. Performance of benchmark vs. real matrices on the Itanium 2.
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Fig. 13. Performance of benchmark vs. real matrices on the Opteron.
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Fig. 14. Performance of benchmark vs. real matrices on the Pentium 4
with symmetry taken into account. Triangles represent symmetric matrices
and circles represent nonsymmetric ones.
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Fig. 15. Performance of benchmark vs. real matrices on the Itanium 2 with
symmetry taken into account. Triangles represent symmetric matrices and
circles represent nonsymmetric ones.
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Fig. 16. Performance of benchmark vs. real matrices on the Opteron with
symmetry taken into account. Triangles represent symmetric matrices and
circles represent nonsymmetric ones.


