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Abstract
The performance of a processor is limited by the

specific bottlenecks that a benchmark exposes while 
running on that processor.  Since the quantification of 
these bottlenecks can be extremely time-consuming, 
our prior work proposed using the Plackett and 
Burman design as a statistically-rigorous, but time-
efficient method of determining the processor’s most 
significant performance bottlenecks.  In this paper, we 
use the Plackett and Burman design to quantify the 
magnitude of the bottlenecks in the SPEC CPU 2000 
benchmark suite from the viewpoints of both 
performance and energy consumption.  We then use 
Principal Components Analysis, and hierarchical and 
K-means clustering algorithms to determine the 
similarity of the benchmarks based on their energy-
delay production bottlenecks.  

1 Introduction
When running a benchmark on a processor, the 

bottlenecks that the benchmark exposes in the 
processor ultimately determines the execution time of 
the benchmark.  For example, if the various queues in 
the load-store unit (LSU) are too small, then trying to 
decrease the execution time of the benchmark solely by 
increasing the processor’s issue width or its number of 
simple integer ALUs is futile since the performance 
bottleneck is the LSU.  However, while the LSU may 
be the performance-limiting bottleneck for one 
benchmark, the size of the L1 D-cache may be the 
limiting bottleneck for another benchmark.  In an 

analogous way, processor components may be energy 
consumption bottlenecks in that those components 
ultimately determine the overall energy consumption of 
the processor.

Although it is very important to precisely identify
the bottlenecks for a specific processor and benchmark, 
determining which processor components are the 
bottlenecks is a non-trivial task, and determining the 
relative significance and ordering of these bottlenecks 
is even more difficult.  To minimize the difficulty of 
determining the significance of a processor’s
bottlenecks, Yi et al. [20] proposed using the Plackett 
and Burman (P&B) design [13] to determine which 
processor parameters, or bottlenecks, have the most 
effect on performance.

In this paper, we use the P&B design to determine 
the most significant performance and energy
consumption bottlenecks for the benchmarks in the 
SPEC CPU 2000 benchmark suite.  Then, we use 
Principal Components Analysis (PCA), and
hierarchical and K-means clustering algorithms to 
determine which benchmarks have similar performance 
and energy consumption bottlenecks.

This paper makes the following contributions:

1. It quantifies and analyzes the performance 
and energy consumption bottlenecks in 
the SPEC CPU 2000 benchmarks.

2. It determines the similarity of benchmarks 
based on their bottlenecks.

The remainder of this paper is organized as 



follows: Sections 2, 3, and 4 describe some related 
work, the P&B design, and the benchmarks and 
simulation methodology that we used in this paper, 
respectively.  Sections 5 and 6 present the results, 
while Section 7 summarizes.

2 Related Work
Yi et al. [20] proposed using the P&B design to 

improve the statistical rigor of simulation 
methodology.  More specifically, they proposed using 
P&B design as the foundation to choose processor 
parameters, select a subset of benchmarks, and analyze 
the effect of a processor enhancement.  This paper 
builds on that work by using the P&B design to 
determine the most significant performance and energy
consumption bottlenecks for the entire SPEC CPU 
2000 benchmark suite, and similarity of benchmarks 
based on those bottlenecks.

Eeckhout et al. [3, 4] characterized benchmarks by 
gathering a set of metrics such as the instruction mix, 
branch prediction accuracy, cache miss rates, and basic 
block lengths for each benchmark and input set pair. 
After gathering these metrics, they used PCA to 
determine the principal components for each pair, and 
then clustered the pairs based on their principal 
components.  Phansalkar et al. [12] also used PCA to 
characterize the benchmark and input set pairs, but 
they used K-means clustering and the Bayesian 
Information Criterion instead to cluster the pairs.  
Vandierendonck and De Bosschere [17] analyzed the 
SPEC CPU 2000 benchmark suite peak results on 340 
different machines representing eight architectures, and 
used PCA to identify the redundancy in the benchmark 
suite. Finally, Eeckhout et al. [5] compared the 
efficacy of using Independent Components Analysis 
(ICA) instead of PCA for benchmark subsetting.  One
key difference between these papers and ours is that 
the focus of these papers is benchmark subsetting while 
this paper primarily focuses on analyzing the 
performance and energy consumption bottlenecks in 
the SPEC CPU 2000 benchmarks.

Finally, Tune et al. [15, 16] and Fields et al. [6, 7, 
8] proposed techniques to predict the criticality of 
instructions to improve execution efficiency of the 
processor.  The key difference between their papers 
and ours is that we use a statistically-rigorous 
technique to quantify the significance of each 
bottleneck across the entire run of the benchmark while 
they use heuristics to dynamically estimate the 
criticality of individual instructions.

3 The Plackett and Burman Design: Finding
Processor Bottlenecks
To determine the bottlenecks in the processor, we 

used the P&B design, with foldover [11], as described 
in [20].  For computer architects, the P&B design is a 

statistical technique that can be used to determine the 
significance of the processor’s bottlenecks, at an O(N) 
simulation cost, where N is the number of bottlenecks. 
By comparison, using a design such as ANOVA [10] 
requires O(2N) simulations for only a little additional 
accuracy.

3.1 Mechanics of the Plackett and Burman 
Design

The first step to use a P&B design is to construct 
the design matrix. Since P&B designs exist only in 
sizes that are multiples of 4, the base P&B design 
requires X simulations, where X is the next multiple-
of-four that is greater than N. The rows of the design 
matrix correspond to different processor configurations 
while the columns correspond to the parameters’ 
values in each configuration.  When there are more 
columns than parameters, then the extra columns serve 
as “placeholders” and have no effect on the simulation 
results.

Table 1. Plackett and Burman design, with 
foldover (X = 8)

A B C D E F G Exec. Time
+1 +1 +1 -1 +1 -1 -1 9
-1 +1 +1 +1 -1 +1 -1 11
-1 -1 +1 +1 +1 -1 +1 20
+1 -1 -1 +1 +1 +1 -1 10
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 112
-1 -1 -1 +1 -1 +1 +1 17
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
-1 +1 -1 +1 +1 -1 -1 33
-1 -1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 4
-34 -224 -96 -202 -110 -170 32

For most values of X, the design matrix is simple 
to construct.  For these values of X, the first row of the 
design matrix is given in [13].  The next X – 2 rows are 
formed by performing a circular right shift on the 
preceding row.  The last line of the design matrix is a 
row of “-1”s.  The gray-shaded portion of Table 1
illustrates the construction of the P&B design matrix 
for X = 8, a design appropriate for investigating 7 (or 
fewer) parameters.  When using foldover, X additional 
rows are added to the matrix.  Although this doubles 
the simulation cost, the advantage of using foldover is 
that it filters out the effects of interactions from the 
single parameter bottlenecks, while also allowing the 
user to determine the significance of two-parameter 



interactions.  The signs in each entry of the additional 
rows are the opposite of the corresponding entries in 
the original matrix.  Table 1 shows the complete P&B
design matrix with foldover; rows 10 to 17 show the 
rows that were added for foldover.

A “+1”, or high value, for a parameter represents a 
value that is higher than the range of normal values for 
that parameter while a “-1”, or low value, represents a 
value that is lower than the range of normal values.  
Ideally, the high and low values for each parameter 
should be just outside of the normal range of values.  
For example, if 16KB and 32KB are typical L1 D-
cache sizes, then an appropriate low value might be 
8KB while an appropriate high value might be 64KB.

The set of low and high values that we used in this 
study is similar to those found in [20].  We fixed the 
issue width to be 4-way to eliminate any potential 
issue-width dependency for the other parameters.

3.2 Calculating the Significance of Bottlenecks 
Using the Plackett and Burman Design

To compute the effect of each parameter, we 
multiply the output value (e.g., execution time, energy
consumption, etc.) by the parameter’s P&B value (+1/-
1) for that configuration and sum the resulting products 
across all configurations.  For example, we compute 
the effect of parameter A is computed by weighting the 
Execution Time Column with Column A in Table 1:

EffectA = (1 * 9) + (-1*11) + … + (-1*6) + (1*4) = -34

Only the magnitude of an effect is important; its 
sign is meaningless.  The effect that a parameter has 
represents how much of the total variation in the output 
value is attributable to that parameter.  Therefore, a 
parameter that has a large effect on the execution time 
accounts for a significant amount of variability in the 
execution time, which makes it a significant 
performance bottleneck (since changing the 
parameter’s value results in large changes in the 
execution time).

After simulation, we computed the percentage of 
the variability in the output value across all 
configurations that can be assigned to each bottleneck 
on a per-benchmark basis, in a manner similar to how 
one computes the percentages for ANOVA [10].  By 
examining the percentage effect that each bottleneck 
has on the average cycles-per-instruction (CPI) or 
average amount of energy-per-instruction (EPI) for that 
suite or benchmark, we can determine absolute and 
relative significance of the performance and energy
consumption, respectively, bottlenecks in the 
processor.

4 Simulation Methodology
In this paper, to gather the profiling data for the 

P&B design simulations, we used SMARTS [19], 
which estimates both the performance and energy
consumption (cc3 power consumption measurement), 
after adding user-configurable instruction latencies and 
throughputs.  All simulations were run until the 
sampling frequency was greater than the recommended 
frequency.

Since we wanted to use a set of benchmarks that 
had a wide range of behavior and represented a wide 
range of applications, i.e., general-purpose computing, 
we decided to use the SPEC CPU 2000 benchmark 
suite.  We downloaded pre-compiled Alpha binaries 
from [18], and evaluated all benchmark and 
reference input set pairs, with the exceptions of 
vpr-place and perlbmk-perfect – for a total of 46 
benchmark and input set pairs – as they both crash 
SMARTS.

Note that, in the remainder of this paper, for 
brevity, we often use the term “benchmarks” to 
represent both the benchmark and its input set.

5 Quantifying the Bottlenecks in SPEC CPU 
2000

5.1 Processor Performance Bottlenecks
Table 2 shows the results of a P&B design with 

foldover (X = 44), where the bottlenecks are sorted in 
descending order of their average percentages.  This 
table shows that, based on the average percentage, 
there are seven significant bottlenecks.  We draw this 
conclusion based on the relatively large difference 
between the average percentage of the seventh most 
significant bottleneck, the number of Integer ALUs, 
and the average percentage of the eighth most 
significant bottleneck, the number of LSU entries.  
Although the seven most significant bottlenecks for 
each benchmark are completely different, one 
bottleneck, the number of ROB entries, is significant 
for all benchmarks since it has a high percentage for 
each benchmark; it has the highest percentage in 23 of 
46 benchmark and input set pairs.  Therefore, for these 
benchmarks, the number of ROB entries is the biggest 
performance bottleneck in the processor.
Therefore, of all these bottlenecks, the architect needs 
to be especially careful when choosing a value for the 
number of ROB entries since a poor choice can 
significantly affect the processor’s performance. The 
L2 cache size, L1 I-cache size and memory latency is 
the most significant performance bottleneck for 10, 6 
and 4 benchmarks, respectively.  Although it is 
significant for some benchmarks, the L1 I-cache size is 
not one of the 5 most significant bottlenecks because it 
does not have a high average percentage. These results 
clearly show that the average percentage may not 
reflect the significance of a bottleneck for a subset of 
benchmarks and is best used only to gain a big-picture 
view of the results.



Table 2. Plackett and Burman design results for all performance bottlenecks; sorted in descending order of the percentage of the total 
variation accounted for by each bottleneck.
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ROB Entries 26.7 28.3 20.0 28.6 23.6 25.9 12.7 18.9 15.4 11.5 4.1 11.9 8.6 5.4 9.8 13.0 36.7 15.1 15.2 5.1 19.1 5.7 32.4 24.3 3.8 19.4 17.4 56.8 16.6 14.4 16.4 13.1 7.5 19.5 18.2 21.8 18.6 10.4 12.4 10.4 12.5 22.7 24.7 25.1 9.3 33.0 17.9

L2 Cache Size 1.1 1.5 0.8 1.3 1.1 4.1 2.2 5.8 2.8 17.8 18.4 14.9 12.8 15.7 13.4 0.8 12.7 28.0 28.0 35.4 1.5 1.1 17.1 24.0 3.7 2.4 16.1 0.1 0.4 0.4 0.5 1.8 0.7 0.5 0.9 1.6 1.7 2.3 5.2 4.5 5.3 11.1 10.0 14.7 30.0 8.5 8.4

Memory Latency First 0.5 0.7 0.0 0.8 0.3 12.9 29.9 14.7 22.3 15.6 9.5 7.0 5.9 7.7 6.1 0.5 6.2 12.0 12.0 27.8 39.6 0.7 10.0 15.1 9.2 16.5 7.0 0.3 0.2 0.2 0.2 0.6 0.1 0.7 0.8 0.7 1.1 5.7 3.1 2.4 3.2 4.3 3.7 5.8 15.5 12.0 7.6

L2 Cache Latency 2.3 6.0 5.6 2.9 6.3 4.2 0.2 6.3 1.3 1.4 0.8 5.7 4.7 1.6 6.4 16.0 1.6 1.5 1.5 0.6 2.4 18.5 1.3 1.2 0.7 9.8 5.1 6.8 15.6 16.2 15.4 11.8 21.0 2.9 4.2 4.3 7.3 14.2 11.9 13.1 12.1 1.3 1.7 2.0 5.3 5.0 6.3

BPred Type 16.6 8.7 24.4 10.7 17.5 1.8 0.3 0.7 0.6 3.9 1.1 4.8 4.0 1.9 4.7 0.9 0.1 0.1 0.1 0.3 0.5 1.8 1.4 0.7 0.7 0.7 7.8 0.4 2.7 3.0 3.6 8.8 4.3 12.7 12.5 16.2 14.5 4.2 4.4 3.5 4.1 9.6 10.4 5.7 1.3 0.1 5.2

L1 I-Cache Size 0.3 0.2 0.1 0.4 0.2 1.8 0.1 0.1 0.1 0.0 0.0 2.9 2.9 0.2 4.2 21.6 0.0 0.2 0.2 0.1 0.0 22.6 0.0 0.1 0.2 7.6 0.8 5.0 14.9 15.5 13.8 12.0 21.0 2.3 4.1 4.0 7.0 17.2 13.9 16.9 13.6 0.1 0.1 0.2 2.0 2.2 5.1

Int ALUs 16.4 12.4 8.3 18.2 10.0 2.4 0.0 0.0 0.0 1.2 0.7 3.4 2.4 1.2 2.6 1.4 0.2 0.3 0.3 0.2 0.0 1.6 2.6 0.6 0.0 0.5 5.6 0.1 2.2 1.9 2.2 4.8 1.4 3.0 3.4 10.0 8.5 2.7 6.1 4.5 5.9 10.7 11.2 9.3 1.6 1.1 4.0

LSU Entries 3.6 4.1 2.0 3.3 2.9 1.7 0.0 0.3 0.2 1.7 0.1 1.5 0.9 0.2 1.3 2.5 3.2 2.7 2.7 0.3 2.0 1.2 3.8 1.4 0.0 1.6 2.2 3.0 4.5 4.5 4.7 4.1 2.4 4.0 4.1 6.2 5.5 1.6 3.1 3.0 3.0 5.3 4.8 4.1 0.4 3.1 2.6

L1 D-Cache Latency 4.3 5.0 3.9 4.1 3.9 1.9 0.3 1.3 0.5 0.9 1.7 3.0 3.1 2.3 3.1 1.4 1.0 0.1 0.1 0.1 0.4 1.2 1.2 0.7 0.3 1.2 2.8 1.2 2.1 2.2 2.2 2.9 1.9 3.1 3.1 4.5 3.9 3.6 3.3 2.9 3.3 3.3 3.6 2.9 0.9 0.7 2.2

L1 I-Cache Block Size 0.1 0.0 0.0 0.1 0.0 1.8 0.3 2.3 1.2 0.1 1.1 1.7 2.1 1.3 2.4 5.4 0.1 0.1 0.1 0.0 0.0 5.4 0.1 0.1 0.6 5.7 0.3 2.4 4.8 5.3 4.8 2.1 3.8 1.3 1.6 0.8 1.3 3.8 1.7 2.3 1.6 0.1 0.1 0.1 0.8 0.8 1.6

Memory Bandwidth 0.1 0.2 0.0 0.3 0.1 2.2 4.2 2.1 3.2 2.4 1.7 1.7 1.5 1.6 1.6 0.5 1.1 2.2 2.2 4.2 5.1 0.4 2.0 2.2 1.4 3.0 1.5 0.0 0.1 0.1 0.1 0.4 0.2 0.0 0.0 0.2 0.4 1.8 1.3 1.2 1.4 0.9 0.8 1.2 2.6 2.3 1.4

L1 D-Cache Size 0.7 6.9 8.2 0.8 8.6 0.0 0.9 1.1 0.4 0.7 1.0 0.0 0.1 0.7 0.0 1.0 0.6 0.0 0.0 0.0 0.3 2.5 0.0 0.1 0.0 0.5 1.0 2.2 2.6 2.5 2.5 2.1 1.3 0.2 0.2 0.3 0.7 0.1 0.9 0.9 1.0 0.1 0.2 0.3 0.1 1.6 1.2

L1 D-Cache Block Size 0.2 0.1 0.2 0.4 0.0 2.3 5.6 3.5 5.4 0.1 5.2 2.4 4.2 6.0 3.0 0.0 0.7 0.1 0.1 0.1 1.8 0.0 0.9 0.7 3.3 1.4 0.6 0.2 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.1 0.0 0.1 0.0 0.3 0.5 1.1

D-TLB Size 1.2 0.5 0.0 1.9 0.3 1.5 0.8 2.5 1.3 5.1 1.2 1.0 1.0 1.4 0.9 0.5 0.5 0.5 0.5 0.2 1.0 0.2 0.6 0.8 1.0 0.5 0.8 0.1 0.1 0.0 0.1 0.2 0.7 5.0 4.2 0.5 0.3 0.5 0.3 0.4 0.3 1.6 1.1 1.2 1.0 1.0 1.0

I-TLB Page Size 0.3 0.5 0.3 0.4 0.7 0.4 0.5 0.0 0.5 7.7 0.6 0.0 0.3 0.6 0.1 0.3 5.1 0.7 0.7 0.6 0.1 0.4 0.0 0.2 4.8 0.1 0.2 0.0 0.0 0.0 0.0 0.5 0.1 1.9 1.3 0.0 0.3 0.1 0.7 0.9 0.8 0.9 0.5 1.0 0.6 0.8 0.8

L1 D-Cache Associativity 1.2 0.8 0.6 1.7 0.5 3.1 2.0 4.0 2.3 0.3 1.1 0.9 1.4 1.7 1.1 0.0 0.5 0.2 0.2 0.1 1.0 0.0 0.2 0.1 1.7 1.0 1.1 0.0 0.0 0.0 0.0 0.4 0.9 0.0 0.0 0.2 0.2 1.1 0.2 0.2 0.2 0.9 0.8 0.5 0.0 0.9 0.8

L2 Cache Associativity 0.4 0.7 0.4 0.7 0.4 2.0 2.3 1.1 1.8 0.5 1.9 1.5 1.9 2.0 1.7 0.1 0.6 0.1 0.1 0.1 0.3 0.0 0.4 0.7 3.4 1.3 0.7 0.0 0.0 0.0 0.0 0.4 0.1 0.6 0.5 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.0 0.7

Int ALU Latencies 2.7 3.6 3.4 2.2 3.1 0.0 0.2 0.1 0.5 0.0 0.1 0.1 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.2 0.1 0.1 0.1 0.5 0.6 0.0 0.0 1.3 1.2 0.3 0.4 0.5 0.3 0.7 0.9 0.6 0.0 0.0 0.6

BPred Misprediction Penalty 1.4 0.4 1.9 0.8 1.1 0.0 0.2 0.7 0.6 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 1.1 0.1 0.8 0.0 0.2 0.2 0.2 0.9 0.5 1.0 1.1 1.4 1.1 0.4 0.5 0.3 0.4 0.6 0.7 0.3 0.0 0.1 0.4

D-TLB Associativity 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.0 0.3 0.0 0.4 0.4 0.0 0.2 0.2 0.1 0.0 6.5 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.4 4.5 3.6 0.4 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.4

FP Square Root Latency 0.1 0.1 0.1 0.2 0.1 1.5 1.9 2.2 2.2 0.1 1.6 0.5 0.9 1.7 0.6 0.1 0.4 0.2 0.2 0.0 0.4 0.0 0.2 0.4 0.8 0.4 0.3 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.4

L2 Cache Block Size 0.0 0.1 0.0 0.1 0.1 0.4 0.9 0.0 0.0 1.2 0.3 0.3 0.5 0.4 0.2 0.0 0.0 0.1 0.1 0.2 8.1 0.1 0.1 0.3 0.3 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.4 0.3 0.1 0.1 0.0 0.1 0.1 0.1 0.4 0.3 0.4 0.4 0.6 0.4

FP ALU Latencies 0.1 0.1 0.1 0.1 0.0 0.0 1.1 0.1 0.8 0.7 1.5 0.6 1.1 1.5 0.7 0.2 0.0 0.7 0.7 0.0 0.1 0.0 0.0 0.1 0.3 0.0 0.0 3.4 0.3 0.3 0.3 0.0 0.1 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3

Placeholder #2 0.3 0.3 0.2 0.4 0.3 0.4 0.3 0.6 0.7 0.2 0.6 0.7 0.7 0.8 0.6 0.0 0.1 0.4 0.3 0.1 0.0 0.1 0.2 0.2 0.5 0.4 0.3 0.0 0.2 0.1 0.3 0.3 0.0 0.4 0.4 0.3 0.2 0.1 0.2 0.1 0.2 0.4 0.4 0.4 0.1 0.1 0.3

FP Multiply Latency 0.2 0.2 0.2 0.2 0.2 0.5 0.0 0.2 0.3 0.2 0.1 0.3 0.3 0.2 0.4 0.4 0.0 0.2 0.2 0.0 0.1 0.5 0.1 0.3 1.0 0.6 0.1 2.5 0.5 0.4 0.4 0.4 0.1 0.0 0.0 0.1 0.2 0.1 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3

Placeholder #1 0.1 0.0 0.0 0.2 0.0 0.2 2.0 1.2 1.5 0.3 1.5 0.4 1.0 1.3 0.5 0.0 0.0 0.1 0.1 0.1 0.2 0.0 0.2 0.3 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.3

I-TLB Latency 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.2 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.4 2.1 0.1 0.1 0.0 0.1 0.2 0.0 0.1 2.4 0.2 0.0 0.1 0.2 0.2 0.3 0.2 0.3 0.9 0.8 0.1 0.1 0.1 0.0 0.2 0.0 0.1 0.1 0.2 0.1 0.2 0.3

Instruction Fetch Queue Entries 0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.5 1.1 0.0 1.5 0.7 1.1 1.1 0.8 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.4 0.0 0.3 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.2

FP Mult/Div 0.0 0.1 0.1 0.0 0.1 0.3 0.5 0.2 0.6 0.1 0.9 0.5 0.6 1.0 0.5 0.1 0.4 0.1 0.1 0.2 0.1 0.1 0.5 0.4 0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.8 0.2

Int Mult/Div 0.0 0.0 0.1 0.0 0.1 0.0 1.3 0.8 1.0 0.0 1.1 0.3 0.7 0.9 0.3 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.8 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.2 0.3 0.0 0.0 0.0 0.2 0.1 0.2 0.0 0.0 0.1 0.0 0.0 0.2

Return Address Stack Entries 0.0 0.1 0.0 0.0 0.0 0.2 0.4 0.7 0.8 0.0 0.5 0.4 0.5 0.5 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.1 0.8 0.4 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.3 0.4 0.1 0.1 0.3 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.2

L1 I-Cache Associativity 0.5 0.3 0.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.0 0.7 0.1 0.0 0.0 0.0 0.8 0.0 0.2 0.1 0.3 0.2 0.3 0.3 0.3 0.4 0.8 0.8 0.8 0.0 0.0 0.2

FP ALUs 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.2 0.5 0.0 0.9 0.1 0.4 0.6 0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.5 0.0 0.1 0.8 0.1 0.0 0.4 0.6 0.6 0.6 0.3 0.0 0.1 0.2 0.0 0.1 0.0 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.2

BTB Entries 0.2 0.0 0.1 0.3 0.0 0.8 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.5 0.0 0.1 0.1 0.1 0.2 0.2 0.0 0.0 0.1 0.0 0.5 0.1 0.1 0.1 0.4 0.3 0.3 0.0 0.0 0.2

L1 I-Cache Latency 0.0 0.1 0.2 0.0 0.2 0.3 1.1 0.3 0.9 0.0 0.7 0.1 0.3 0.9 0.2 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.6 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.2

Int Divide Latency 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.0 0.1 0.4 0.0 0.0 0.0 0.2 0.1 0.1 0.6 0.7 0.5 0.1 0.0 0.9 0.9 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.1

FP Divide Latency 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.4 0.1 0.2 0.2 0.0 0.0 0.2 0.0 0.0 0.4 0.1 0.0 0.1 0.4 0.4 0.3 0.0 0.3 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.8 0.1

Memory Ports 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1

Int Multiply Latency 0.0 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.2 0.1 0.0 0.4 0.4 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

I-TLB Associativity 0.0 0.0 0.0 0.1 0.0 0.5 0.0 0.2 0.1 0.0 0.2 0.1 0.2 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

I-TLB Size 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.3 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.1

BTB Associativity 0.0 0.1 0.2 0.0 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Speculative Branch Update 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



Table 3. Plackett and Burman design results for all energy consumption bottlenecks; sorted in descending order of the percentage of 
the total variation accounted for by each bottleneck.
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BTB Associativity 13.6 16.8 14.6 15.4 15.1 16.7 9.1 12.6 10.3 13.9 10.3 17.0 15.7 11.5 16.7 12.5 10.3 6.2 6.3 8.0 11.6 11.6 13.4 11.8 7.2 14.4 16.8 13.2 13.3 12.7 13.9 15.7 13.3 13.0 13.9 15.4 16.3 16.1 17.1 16.3 17.0 14.0 14.5 15.5 14.6 15.2 13.5

BTB Entries 14.3 17.8 16.3 15.6 16.3 11.6 5.4 8.1 4.9 11.9 5.3 14.3 11.8 7.0 13.3 13.5 9.8 4.5 4.6 6.8 11.4 13.2 11.6 10.1 4.1 12.7 15.6 13.4 14.5 14.2 14.5 16.0 14.1 14.0 14.9 15.8 16.9 15.8 17.6 17.1 17.4 12.7 13.7 14.6 13.1 15.5 12.6

BPred Type 16.1 9.6 22.2 11.2 17.6 3.6 0.3 0.6 0.5 7.0 2.2 7.7 6.7 3.8 7.7 1.4 0.0 0.0 0.0 0.7 0.3 2.9 2.3 1.2 0.8 0.5 11.5 0.2 4.5 5.3 5.8 11.5 5.9 14.0 13.6 15.9 14.8 6.6 7.6 6.7 7.3 13.8 14.3 9.3 2.8 0.1 6.5

Memory Latency First 0.0 0.1 0.0 0.1 0.0 7.2 23.3 10.4 17.0 7.1 6.0 3.2 3.1 4.7 2.9 0.3 3.5 8.2 8.2 18.3 24.0 0.5 4.6 8.5 5.9 12.1 1.8 0.1 0.1 0.1 0.2 0.2 0.0 0.3 0.3 0.2 0.3 2.8 1.4 1.1 1.4 1.3 1.1 2.0 8.2 6.3 4.5

L2 Cache Latency 0.5 1.8 1.3 0.7 1.6 3.0 0.5 7.7 2.1 1.9 1.8 4.5 4.4 2.4 5.3 12.5 2.5 3.4 3.4 2.0 1.6 13.7 2.0 2.7 0.3 9.1 2.3 6.3 10.7 11.1 10.2 6.2 13.1 0.5 0.9 1.2 2.6 7.5 6.1 7.4 6.3 0.8 0.9 1.4 6.8 6.1 4.4

L1 I-Cache Size 11.9 11.4 9.1 11.4 10.2 3.0 2.2 1.6 2.4 3.8 3.3 1.8 1.4 3.1 0.9 2.6 3.5 1.0 1.0 0.8 1.9 4.6 6.8 3.8 4.0 0.5 7.0 2.8 0.3 0.5 0.1 0.0 1.6 3.5 2.4 4.3 2.1 0.1 0.0 0.2 0.0 10.4 10.2 8.6 0.2 0.5 3.5

L2 Cache Size 5.3 5.3 4.1 5.5 4.7 2.3 1.0 0.3 0.7 0.2 2.4 0.0 0.0 0.9 0.0 3.5 0.3 12.3 12.2 13.5 2.2 2.6 0.2 3.1 0.0 2.3 0.3 8.0 6.0 5.8 5.9 4.3 5.1 5.0 4.6 4.8 4.7 4.3 1.7 1.8 1.5 0.5 0.7 0.0 3.5 0.2 3.3

ROB Entries 0.4 0.6 0.0 0.8 0.1 5.1 3.9 6.8 5.0 0.8 0.2 0.4 0.2 0.2 0.2 1.7 16.4 8.2 8.2 1.9 5.5 0.1 9.2 9.0 0.9 4.7 0.5 16.0 1.6 0.9 1.1 0.5 0.2 0.4 0.3 0.6 0.5 0.1 0.4 0.2 0.4 1.1 1.1 2.4 1.3 11.0 2.9

L1 D-Cache Size 2.4 0.2 0.0 2.2 0.0 6.3 5.7 0.9 5.3 1.5 7.2 3.8 5.2 6.9 4.4 1.7 1.5 1.2 1.2 1.5 2.8 0.1 4.4 2.5 2.9 2.9 1.6 2.0 1.3 1.4 1.6 1.2 1.2 2.5 2.9 4.3 3.3 3.7 1.8 1.9 1.7 4.3 3.6 3.0 1.9 1.4 2.6

L1 D-Cache Block Size 0.1 0.1 0.1 0.1 0.0 1.4 5.0 3.0 5.3 0.0 5.5 1.8 3.2 5.5 2.2 0.0 1.2 0.3 0.3 0.4 2.0 0.1 1.0 1.2 3.6 1.1 0.5 0.4 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.5 0.6 1.0

Memory Bandwidth 0.1 0.1 0.0 0.1 0.1 1.6 3.2 1.6 2.8 1.7 1.5 0.9 0.9 1.3 0.8 0.1 1.3 3.0 3.0 4.0 2.5 0.0 2.0 2.3 2.2 1.7 0.6 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.2 0.6 0.6 0.4 0.6 0.6 0.5 0.9 1.8 1.9 1.0

Int ALUs 3.1 2.5 0.9 4.2 1.5 0.8 0.1 0.1 0.0 0.0 0.2 0.8 0.8 0.5 0.6 0.2 0.1 0.0 0.0 0.1 0.3 0.3 0.7 0.0 0.1 0.0 0.9 0.1 0.5 0.4 0.5 1.4 0.1 0.9 0.9 2.8 2.3 0.4 1.4 0.9 1.4 2.3 2.3 2.2 0.1 0.1 0.9

FP ALUs 1.3 1.0 0.7 1.3 0.8 0.9 1.5 1.0 1.3 1.0 2.5 1.3 1.7 2.3 1.4 0.0 1.8 0.5 0.5 0.6 0.7 0.1 1.2 1.5 2.3 0.1 1.4 0.0 0.0 0.0 0.0 0.3 0.4 0.4 0.3 0.7 0.6 0.6 0.3 0.2 0.3 1.3 1.2 1.1 0.7 0.5 0.9

L1 I-Cache Block Size 0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.0 0.3 0.0 0.5 0.6 0.9 0.6 1.1 3.6 0.0 0.2 0.2 0.0 0.2 3.6 0.0 0.0 0.2 2.9 0.1 1.4 3.0 3.5 3.0 1.1 2.6 1.0 1.2 0.4 0.6 1.9 0.7 1.0 0.7 0.0 0.0 0.0 0.4 0.2 0.9

L1 D-Cache Latency 0.6 0.7 0.5 0.6 0.5 1.0 0.6 0.8 0.7 0.4 1.3 1.5 1.8 1.6 1.6 0.8 0.5 0.0 0.0 0.0 0.3 1.0 0.3 0.3 0.2 1.1 0.7 0.4 1.0 1.2 1.1 1.2 1.0 1.0 1.1 1.2 1.2 2.2 1.7 1.6 1.7 0.6 0.7 0.6 0.6 0.3 0.9

D-TLB Size 0.5 0.2 0.1 0.7 0.2 1.1 1.0 2.0 1.2 2.9 0.8 0.4 0.5 0.8 0.4 0.2 0.3 0.4 0.4 0.2 1.1 0.1 0.4 0.6 0.5 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.3 2.5 2.1 0.3 0.2 0.2 0.1 0.2 0.1 0.9 0.6 0.6 0.7 0.3 0.6

I-TLB Page Size 0.1 0.2 0.1 0.1 0.3 0.2 0.4 0.0 0.4 4.6 0.6 0.0 0.2 0.6 0.0 0.5 4.1 0.6 0.6 0.5 0.1 0.6 0.0 0.2 3.9 0.0 0.1 0.1 0.1 0.1 0.1 0.5 0.2 0.9 0.7 0.0 0.2 0.0 0.6 0.7 0.6 0.4 0.2 0.5 0.5 0.6 0.6

FP Multiply Latency 0.3 0.2 0.3 0.3 0.3 0.2 0.0 0.4 0.3 1.0 0.4 0.7 0.8 0.6 0.8 0.9 0.3 0.2 0.1 0.1 0.0 1.0 0.1 0.4 2.1 0.6 0.3 2.2 0.8 0.8 0.8 0.7 0.4 0.0 0.0 0.2 0.4 0.1 0.5 0.7 0.6 0.3 0.3 0.4 0.6 0.6 0.5

L2 Cache Block Size 0.2 0.3 0.1 0.2 0.3 0.0 1.0 0.0 0.1 1.0 0.3 0.4 0.5 0.4 0.4 0.1 0.2 0.6 0.5 0.3 4.3 0.2 0.5 0.6 0.5 0.1 0.2 0.0 0.4 0.4 0.4 0.4 0.2 0.5 0.4 0.4 0.3 0.0 0.4 0.3 0.4 0.8 0.7 0.8 0.4 0.6 0.5

LSU Entries 0.0 0.0 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.1 0.0 0.0 0.1 0.9 0.8 1.4 1.3 0.1 0.4 0.4 0.8 0.2 0.2 0.4 0.0 0.5 1.3 1.3 1.3 0.7 0.5 0.3 0.4 0.5 0.6 0.1 0.4 0.5 0.4 0.4 0.2 0.3 0.0 1.0 0.4

L2 Cache Associativity 0.4 0.5 0.3 0.5 0.4 0.8 1.1 0.1 0.7 0.1 1.1 0.7 0.9 1.1 0.8 0.3 0.1 0.1 0.1 0.0 0.0 0.1 0.2 0.3 1.6 0.2 0.5 0.1 0.0 0.0 0.0 0.3 0.1 0.9 0.8 0.5 0.2 0.1 0.1 0.1 0.2 0.3 0.3 0.2 0.0 0.1 0.4

FP Mult/Div 0.0 0.1 0.1 0.0 0.1 0.5 1.1 0.4 1.1 0.1 1.4 0.5 0.7 1.2 0.5 0.0 0.5 0.1 0.1 0.5 0.3 0.0 0.6 0.7 0.0 0.3 0.1 0.3 0.0 0.0 0.0 0.0 0.2 0.7 0.7 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.3 0.9 0.3

L1 D-Cache Associativity 0.3 0.2 0.1 0.4 0.1 0.9 0.9 2.5 1.3 0.0 0.3 0.0 0.2 0.4 0.1 0.1 0.2 1.0 1.0 0.9 0.4 0.1 0.0 0.0 0.8 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.4 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.2 0.2 0.3

L1 I-Cache Associativity 0.7 0.8 0.5 0.7 0.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.3 0.3 0.1 0.1 0.2 0.6 0.2 0.3 0.1 0.8 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.2 0.5 0.3 0.1 0.3 0.2 0.3 0.9 0.9 1.0 0.0 0.1 0.3

BPred Misprediction Penalty 0.4 0.1 0.4 0.2 0.2 0.2 0.2 1.3 0.8 0.1 0.3 0.0 0.1 0.1 0.0 0.4 0.7 0.5 0.4 0.1 0.1 0.2 0.0 0.3 1.5 0.7 0.2 1.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.5 0.3

D-TLB Associativity 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.4 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.2 0.0 0.1 0.0 0.0 0.0 4.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1 2.5 2.2 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.3

Placeholder #1 0.0 0.0 0.1 0.0 0.1 0.3 1.5 1.1 1.4 0.3 0.7 0.2 0.5 0.7 0.3 0.1 0.0 0.4 0.4 0.1 0.4 0.1 0.1 0.2 0.5 0.8 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.3

Int Divide Latency 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.3 0.2 0.3 0.6 0.1 0.1 0.4 0.1 0.3 0.4 0.2 0.2 0.4 0.3 0.8 0.4 0.4 0.1 0.1 0.3 0.1 0.7 0.8 0.7 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.4 0.4 0.1 0.0 0.2

Instruction Fetch Queue Entries 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.2 0.0 1.2 0.9 1.1 1.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.7 0.4 0.0 0.0 0.0 0.2 0.1 0.2 0.2 0.2 0.2 0.3 0.4 0.3 0.4 0.1 0.2 0.1 0.1 0.1 0.2

FP ALU Latencies 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.3 0.3 1.2 0.3 0.6 1.0 0.4 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 2.6 0.4 0.4 0.3 0.0 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2

Speculative Branch Update 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.3 0.6 0.4 0.3 0.1 0.1 0.2 0.1 0.0 0.3 0.6 0.6 0.6 0.4 0.0 0.3 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.3 0.2

FP Square Root Latency 0.0 0.0 0.1 0.0 0.0 0.2 0.5 0.6 0.6 0.2 0.2 0.0 0.0 0.2 0.0 0.1 0.2 0.4 0.4 0.6 0.0 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.0 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2

Int Multiply Latency 0.0 0.0 0.1 0.0 0.1 0.2 0.4 0.3 0.5 0.0 0.2 0.0 0.0 0.1 0.0 0.2 0.1 0.3 0.3 0.6 0.4 0.4 0.0 0.4 0.6 0.1 0.0 0.0 0.3 0.3 0.3 0.1 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2

I-TLB Latency 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.0 0.1 0.0 0.0 0.1 0.0 0.1 1.4 0.0 0.0 0.1 0.0 0.1 0.0 0.1 1.3 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.2 0.6 0.6 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2

Int Mult/Div 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.9 0.7 0.0 0.3 0.1 0.2 0.3 0.1 0.1 0.0 0.5 0.5 0.1 0.0 0.0 0.2 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.2

Int ALU Latencies 0.5 0.7 0.8 0.3 0.7 0.0 0.1 0.2 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.3 0.3 0.1 0.0 0.1 0.0 0.1 0.2 0.0 0.0 0.3 0.1

Return Address Stack Entries 0.0 0.1 0.0 0.0 0.0 0.1 0.3 0.4 0.4 0.0 0.5 0.3 0.3 0.4 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.9 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Placeholder #2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.4 0.2 0.3 0.4 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.8 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.2 0.2 0.0 0.0 0.1

I-TLB Size 0.1 0.1 0.2 0.0 0.2 0.0 0.1 0.5 0.2 0.1 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.1 0.1 0.1 0.1 0.0 0.4 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.1

Memory Ports 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.6 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.5 0.1 0.0 0.0 0.2 0.3 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1

L1 I-Cache Latency 0.0 0.1 0.1 0.0 0.1 0.1 0.4 0.0 0.4 0.0 0.3 0.1 0.2 0.4 0.1 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

FP Divide Latency 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1.0 0.1

I-TLB Associativity 0.1 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1



Table 2 also clearly shows the effect that each 
benchmark has on the processor.  The “effect” that a 
benchmark has on the processor can be defined as the
set of bottlenecks that the benchmark induces in the 
processor.  For example, for a compute-intensive 
benchmark, the number of functional units and the 
branch prediction accuracy will probably be significant 
performance bottlenecks.  On the other hand, for a 
memory-intensive benchmark, the size of the L2 cache 
and the memory latency may be the significant 
bottlenecks.  An example of a compute-intensive 
benchmark is gzip-graphic since combined percentages 
of the number of integer ALUs and the branch 
predictor type (i.e., branch prediction accuracy) 
accounts for over 33% of the total variation in the CPI.  
An example of a memory-intensive benchmark is mcf
since the combined percentage of the L2 cache size and 
the memory latency is over 63%.

5.2 Processor Energy Consumption Bottlenecks
From Table 3, we can see that the most significant

performance and energy consumption bottlenecks are 
quite similar.  However, although the size and the 
associativity of the branch target buffer (BTB) are the 
two most significant energy consumption bottlenecks, 
both are insignificant as performance bottlenecks.
Also, the number of ROB entries, which is the most 
significant performance bottleneck, is only the eighth 
most significant energy bottleneck.  While BTB size 
and associativity accounts for the highest average 
percentage of the total power consumption variation, 
its true significance is not as dramatic as Table 3 would 
indicate.  The reason for this apparent discrepancy is 
that the high value for the BTB associativity (fully-
associative) forces the BTB to dissipate a 
disproportionately high amount of power, while not 
significantly affecting the performance.  In other 
words, while using large fully-associative BTB inflates
the importance of the BTB as an energy consumption 
bottleneck, the BTB associativity does not affect the 
significance of the BTB as a performance bottleneck.

The other significant parameters for performance 
and energy consumption are similar; five of the seven 
most significant parameters for performance and 
energy are the same (branch predictor type, memory 
latency, L2 cache latency, L2 cache size, and L1 I-
cache size).  Although bottlenecks such as the memory 
and L2 cache latency do not directly dissipate power, 
they still are important energy consumption bottlenecks 
since the processor still dissipates static power when 
servicing memory accesses.  Therefore, higher 
latencies increase the overall energy consumption by 
increasing the amount of static energy consumption.

6 Similarity of SPEC CPU 2000 Bottlenecks
Understanding the similarity between benchmarks

is extremely important when constructing a benchmark 
suite or when selecting a representative subset from a 
benchmark suite.  Obviously, selecting benchmarks 
that are not very distinct may overestimate or 
underestimate the performance of an optimization and 
lead to misleading conclusions.  On the other hand, 
simulating redundant benchmarks will significantly 
increase the time and effort required for performance 
evaluation.

To quantify the similarity between benchmarks, a
computer architect can using several different criteria,
such as the execution time, instruction mix, and cache 
miss rate.  In this section, we measure the similarity 
between benchmarks in SPEC CPU 2000 suite based 
on the degree to which they stress the same processor 
bottlenecks.  In other words, we consider two 
benchmarks to be similar if they stress the same 
performance and energy consumption bottlenecks to 
the same degree.   In order to include the combined 
effect of performance and energy consumption, we use 
the energy-delay product (EDP), which is an energy-
efficiency metric that combines performance with 
energy consumption [1].  EDP is the product of the CPI 
and EPI.

After calculating the P&B magnitudes for each 
benchmark based on their EDPs, we rank each 
bottleneck based on its P&B magnitude, where the 
bottleneck with the largest magnitude is assigned a 
rank of 1 and the smallest is assigned a rank of 43.  
Then, we vectorize their ranks such that a vector with
43 elements corresponding to the ranks of the EDP 
bottlenecks represents each benchmark.  (Our previous 
experience indicated that using ranks instead of 
magnitude does not distort the results.)  Since the 
dimensionality of the rank vector is very large, it is 
difficult to look at the data and draw meaningful 
conclusions from it.  Therefore, we use PCA to reduce 
the dimensionality of the data set and remove 
correlation while retaining most of the original 
information.  PCA computes new variables, called 
principal components, which are linear combinations 
of the original variables, such that the principal 
components are uncorrelated [2].  We retain the 
principal components that together account for at least 
80% variance of the original data.

After using PCA, we use the K-means clustering 
algorithm [9] to cluster the benchmarks based on the 
similarity of their EDP bottlenecks.  The K-means 
clustering algorithm groups the benchmarks into K
distinct clusters.  Since not all values of K fit the input 
data set well, we explore various values of K in order 
to find the optimal clustering for the given data set.  
Additionally, since the quality of the K-means 
clustering results depend on the initial placement of 
cluster centers, we use 100 different initial cluster 
starting points for each value of K.



Table 4: Optimal groups of clusters for the 46 benchmark-input pairs based on their similarity of
energy-delay product bottlenecks.

Cluster Benchmarks
1 mesa, crafty, eon-cook, eon-kajiya, eon-rushmeier, perlbmk-makerand
2 perlbmk-splitmail_535, perlbmk-splitmail_704
3 perlbmk-diffmail, vortex-1, vortex-2, vortex-3
4 wupwise, swim, mgrid, equake, fma3d, sixtrack, gap
5 applu, gcc-166, gcc-integrate
6 gzip-graphic, gzip-program, gzip-random, gzip-source, perlbmk-splitmail_850, perlbmk-splitmail_957
7 gcc-200, gcc-expr, gcc-scilab
8 gzip-log, parser, bzip2-graphic, bzip2-program, bzip2-source
9 mcf, facerec, ammp, twolf, apsi

10 vpr-route, galgel, art-110, art-470
11 lucas

Figure 1.  Dendrogram showing complete linkage distance for the 46 benchmark-input pairs based 
on their similarity of energy-delay product bottlenecks.

After clustering, we use the Bayesian Information 
Criterion (BIC) to determine the K-value with the best 
fit.  For a value of K, the BIC score indicates the 
probability that the data belongs to K different normal 
distributions.  Since a higher BIC score indicates a 
greater probability of a good fit for that value of K, we 
select the result that yields the highest BIC score as the 
optimal value of K [14].  After applying the 
aforementioned steps, we found that K=11, or 11 
benchmark clusters, was the best fit for the bottleneck 
characterization data.

In order to visualize the relative positions of the 

benchmarks in the workload space and the distance 
between them, we also present a tree, or dendrogram, 
using hierarchical clustering.  The vertical scale of the 
dendrogram lists the benchmark, while the horizontal 
scale corresponds to the linkage distance obtained from 
hierarchical clustering analysis.  The shorter the 
linkage distance the closer the benchmarks are to each 
other in the workload space.

Table 4 shows this clustering while Figure 1 
presents the dendrogram of this clustering.  In Table 4, 
the benchmarks in boldfaced font are the ones that are 
closest to the center of their respective cluster.  Note 



that selecting the boldfaced benchmark from each 
cluster forms a representative subset of the SPEC CPU 
2000 benchmarks based on their EDP bottlenecks.  
Computer architects can use this subset in lieu of the 
entire suite to reduce the simulation time.

In order to understand how the benchmarks are 
similar/dissimilar, we first categorized the bottlenecks 
into four different categories related to (1) Data 
memory (e.g., L1 D-cache size, L1 D-cache latency,
etc.), (2) Control flow (e.g., Branch misprediction 
penalty, number of BTB entries, etc.), (3) Instruction 
memory (e.g., L1 I-cache size, L1 I-cache latency, 
etc.), and (4) Processor core pipeline (Number of 
Integer ALUs, number of ROB entries, etc.), and then 
clustered the benchmarks considering only the 
bottlenecks from one category at a time.

Due to space constraints, we do not present the 
results for each of these categories. However, we use 
this information to explain why specific benchmarks 
were clustered together using the overall benchmark
characteristics.  From these results, we make a number 
of interesting observations related to the similarity 
between the input sets of the benchmarks, across 
benchmarks, and the benchmarks that emerge as 
outliers in terms of how they stress the performance 
and power bottlenecks with respect to the EDP 
efficiency metric.

6.1 Similarity Between Input Sets
In this section we discuss the similarity between 

the processor bottlenecks that various input sets invoke 
from a particular benchmark. 

All the 3 inputs sets for vortex stress the data 
memory, control flow, and instruction memory 
bottlenecks almost identically.  However, vortex-2
stresses the processor core pipeline bottlenecks slightly 
differently (higher sensitivity to ALU latencies) as 
compared to the other two input sets.  However, in 
general, the three different input sets for vortex exhibit
very similar behavior, as do the three input sets of
bzip2.  Similarly, for art, the ranks of bottlenecks for 
the both input sets are almost identical.  The same is 
true for the three input sets of eon.  From these 
observations we can conclude that having more than 
one input set for vortex, bzip2, art, and eon does not 
expose a different bottlenecks that are fundamentally 
different.

On the other hand, the behavior of gzip, gcc, and 
perlbmk is heavily dependent on the input set.  The 
{graphic, program, random, source} input sets for gzip
exhibit similar behavior, whereas the log input set 
invokes a different behavior.  More specifically, the log
input does not stress the branch predictor as much as 
the other four input sets.  gcc stresses the processor 
bottlenecks in two different ways.  For the {166, 
integrate} input sets, the L1 I-cache size bottleneck is 

very significant, while the {200, expr, scilab} input 
sets are more sensitive to the branch predictor accuracy
bottleneck. The bottlenecks stressed by perlbmk are
also highly dependent on the input set.  The 
splitmail_850 and splitmail_957 input sets are similar 
to each other while the same is true for the 
splitmail_535 and splitmail_704 input sets. The 
splitmail_850 and splitmail_957 input sets stress the 
ALU latencies and L2 cache related bottlenecks more 
than the splitmail_535 and splitmail_704 input sets.
The other two input sets, diffmail and makerand, differ 
in how they stress the data memory bottlenecks; the 
makerand input set stresses the L1 D-cache size and L2 
cache latency bottlenecks, while for diffmail L2 cache 
size is one of the bottlenecks that affects performance 
the least.  The diffmail and makerand input stress the 
L1 I-cache bottlenecks significantly more than the 
other input sets of perlbmk. Therefore, depending on 
the input set, the input sets for perlbmk exposes 4 
different sets of bottlenecks.

6.2 Similarity Between Benchmarks
The clusters in Table 4 show the similarity 

between various benchmarks across all workload 
characteristics.  However, benchmarks can be more 
similar for a particular set of characteristics than 
others.  In this section, we explain why a group of 
benchmarks are clustered together or appear in 
different clusters.

art, mcf, ammp, and twolf are similar to each other 
based on the data memory bottlenecks.  These are the 4 
benchmarks in SPEC CPU 2000 that heavily stress the 
data memory bottlenecks.  Surprisingly, art and mcf –
the benchmarks with the highest L1 D-cache miss rates 
in the entire suite – do not appear in the same cluster.  
While art and mcf stress data memory bottlenecks and 
control flow related bottlenecks similarly, they stress 
the instruction memory and processor core pipeline 
bottlenecks differently.  Therefore, these two 
benchmarks appear in different clusters when all 
bottlenecks are used for clustering.

gzip-log stresses the bottlenecks in the same way 
as all input sets of bzip2.  While gzip and bzip2 are 
both compression algorithms, the other four input sets 
of gzip, {graphic, program, random, source}, and 
bzip2 stress the bottlenecks differently enough that 
they belong to different clusters.

mesa and crafty form a very tight cluster and show 
very similar behavior across the 4 different categories 
of bottlenecks. gzip, parser, perlbmk, vortex and bzip2
have similar behavior for the control flow bottlenecks, 
in that they heavily stress the branch predictor 
bottlenecks in the processor.

  The benchmarks mesa, crafty, fma3d, eon, 
perlbmk, gap, and vortex all stress the instruction 
memory hierarchy, but end up in different groups 



depending on whether they are sensitive to L1 I-cache 
latency, L1 I-cache size, etc.

6.3 Outlier Benchmark s
From the clustering results in Table 4, we observe 

that compared to the other benchmarks, lucas is very 
unique as it is the sole member of Cluster 11.  Unlike 
other benchmarks, lucas only stresses the number of 
FP ALUs and the FP Multiply latency bottlenecks.  All 
other processor core pipeline bottlenecks do have much 
impact on the performance and energy consumption.  
In stark contrast to the other benchmarks, the number 
of ROB entries is insignificant for lucas, while it is 
usually of the most significant bottlenecks for the other 
benchmarks.  For the control flow bottlenecks, the 
branch misprediction penalty is important, but the 
number of BTB entries is not.  Finally, the memory 
latency bottleneck is more important than the L2 cache 
latency bottleneck, which suggests that the L1 cache 
misses also result in L2 cache misses, thus making the 
memory latency a significant bottleneck.   

Although wupwise appears in the same cluster as 
swim, mgrid, equake, fma3d, sixtrack, and gap when 
clustered based on all bottlenecks, it is an outlier when 
only considering the processor core pipeline 
bottlenecks.   The reason for this is that the Integer and 
FP ALU bottlenecks are the highest ranked bottlenecks 
(have almost no impact on performance), which makes 
it an aberration compared to other benchmarks.

In conclusion, the results in this section show that 
characterizing and clustering benchmarks based on 
their bottlenecks can help computer architects gain a 
better understanding of the benchmark behavior and its
similarity to other benchmarks.   Computer architects 
can use this information when constructing benchmark 
suites and/or finding a representative subset of an 
existing suite.

7 Summary
One the key characteristics of a benchmark are the 

bottlenecks that it exposes when running on a 
processor.  Since the performance of the processor is 
limited by its performance bottlenecks, and likewise 
for the energy consumption bottlenecks, determining 
which bottlenecks a benchmark exposes is important.

In this paper, we use the Plackett and Burman 
design to efficiently determine the performance and 
energy consumption bottlenecks in the SPEC CPU 
2000 benchmark suite.  Our results show that the 
number of ROB entries is the most important 
performance bottleneck, while the L2 cache size, L1 I-
cache size, and memory latency are also significant.  
With the exception of the number of BTB entries and 
associativity, the energy consumption bottlenecks are 
very similar to that of the performance bottlenecks.  
The large “+1” value of the number of BTB entries and 

BTB associativity overinflates the importance of these 
two parameters as energy consumption bottlenecks.

Our clustering results show that lucas is the most 
unique benchmark based on its performance 
bottlenecks, which makes it a valuable addition to the 
SPEC CPU 2000 benchmark suite.  Also, gzip, gcc, 
and perlbmk are the only benchmarks in the SPEC 
CPU2000 benchmark suite that expose dramatically 
different sets of performance bottlenecks depending on 
the input sets used.  Finally, we provide subset of 
benchmarks that are representative of the performance 
and energy consumption bottlenecks stressed by the 
entire benchmark suite.  Computer architects and 
researchers can use this as a guideline to subset the 
benchmark suite if the time required to simulate all the 
benchmarks is prohibitively high.
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