
PROCEEDINGS OF THE 2006 SPEC BENCHMARK WORKSHOP, JAN. 23, 2006 1

Benchmarking using the
Community Atmospheric Model

Patrick H. Worley1

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831–6016
Email: worleyph@ornl.gov

Abstract— The Community Atmospheric Model (CAM) is a
global atmosphere model developed for the weather and climate
research communities. CAM also serves as the atmospheric
component of the Community Climate System Model (CCSM).
As a community model, it is important that CAM run efficiently
on different architectures, and that it be easily ported to and op-
timized on new platforms. The current version of CAM contains
a number of performance portability features - compile-time or
runtime parameters that can be used to optimize performance for
a given platform, problem or processor count. The large number
of tuning options can make benchmarking an arduous task. The
paper describes these options and how optimization is managed
to make it feasible for evaluation of early systems. The paper
also describes some of the performance sensitivities of selected
platforms to the different tuning options.

I. I NTRODUCTION

Oak Ridge National Laboratory (ORNL) computer scientists
have been evaluating “early systems” since the mid 1980s [9],
[10], [12], [11], [13], [14], [15], [16], [20], [28], [32], [34],
including, most recently, the SGI Altix, Cray XD1, Cray XT3,
and Cray X1. Early systems are low serial number or pre-
commerical release versions of computer systems, often deliv-
ered with unoptimized or missing system software. The goal
of the evaluation is to comment on the promise of the system
in a fast, fair, and open way. Conducting evaluations that are
both fast and fair is difficult in practice, and compromises
are often required. However, if a new architecture provides
a novel feature that standard benchmarks do not examine,
simply running the standard benchmarks provides no insight
into the utility of that feature. Therefore, we develop and use
custom benchmarks, as appropriate, as well as use standard
benchmarks.

We typically take a hierarchical approach, using microker-
nels to measure subsystem performance, kernels to compare
programming paradigms and to measure whole system perfor-
mance, and compact or full application codes to estimate the
performance in terms meaningful to the application users. The
microkernel and kernel results are used to help understand the
full application performance. They are also used to estimate

1The work of this author was sponsored by the Office of Mathematical,
Information, and Computational Sciences, Office of Science, U.S. Department
of Energy under Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC.
Accordingly, the U.S. Government retains a nonexclusive, royalty-free license
to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes.

what the performance might be if the application codes were
modified to exploit the unique features of the system being
evaluated. Unfortunately, it is rarely feasible within the time
frame of an early evaluation to make significant modifications
to the applications codes in order to verify these predictions.

We have also participated in the development of some
of the application codes in our benchmark suites, helping
introduce “performance portability” features into the codes.
These features are compile-time or runtime tuning options
that can be used to quickly optimize a code on a new
platform, including, for example, support for different vendor-
supplied math libraries or messaging layers and interfaces
for adding support for new ones. While not perfect, these
performance portable codes make it easier to perform a fair
evaluation. This paper describes one such application code, the
Community Atmospheric Model (CAM), and how it is used
in our benchmarking.

CAM is a global atmosphere model developed at the Na-
tional Science Foundation’s National Center for Atmospheric
Research (NCAR) with contributions from researchers funded
by the Department of Energy (DOE) and by the National
Aeronautics and Space Administration (NASA) [2], [3]. CAM
is used in both weather and climate research. In particular,
CAM serves as the atmospheric component of the Community
Climate System Model (CCSM) [1], [4]. As a community
model, it is important that CAM run efficiently on different
architectures, and that it be easily ported to and optimized on
new platforms. CAM contains a number of compile-time and
runtime parameters that can be used to optimize performance
for a given platform, problem or processor count. When
benchmarking with CAM it is important that the code be
optimized to approximately the same level as for a production
run, but no more. For example, production usage requires
that the results be invariant to the number of processors
used. This “reproducibility” requirement can disallow some
compiler optimizations.

A consortium of DOE-funded mathematicians and computer
scientists, including researchers at ORNL, began working with
the Community Climate Model (CCM) [19], [23], the prede-
cessor to CAM, in the early 1990s, developing a massively
parallel version (CCM/MP-2D) in which many of the perfor-
mance portability techniques later implemented in CAM were
investigated [6], [7], [8]. As part of this effort we developed
a parallel algorithm testbed code called the Parallel Spectral

2 PROCEEDINGS OF THE 2006 SPEC BENCHMARK WORKSHOP, JAN. 23, 2006

Transform Shallow Water Model (PSTSWM) [31], [35], [36].
PSTSWM was our first attempt at developing a performance
portable benchmark. PSTSWM was later included in PARK-
BENCH [21]. The importance of PSTSWM is that it includes
a superset of the tuning options supported in CCM/MP-2D,
and PSTSWM can be used to identify a subset of candidate
options, minimizing the number of required CCM/MP-2D
tuning runs. While less important for CAM, as PSTSWM is
not as faithful a representation of the parallel algorithms in
CAM, it is still used for this purpose.

II. COMMUNITY ATMOSPHERICMODEL

CAM is a mixed-mode parallel application code, using
both the Message Passing Interface (MPI) [18] and OpenMP
protocols [5]. CAM is characterized by two computational
phases: the dynamics, which advances the evolution equations
for the atmospheric flow, and the physics, which approximates
subgrid phenomena such as precipitation processes, clouds,
long- and short-wave radiation, and turbulent mixing [3]. The
approximations in the physics are referred to as the physi-
cal parameterizations. Control moves between the dynamics
and the physics at least once during each model simulation
timestep. The number and order of these transitions depend
on the numerical algorithm in the dynamics.

CAM includes multipledynamical cores (dycores), one of
which is selected at compile-time. Three dycores are currently
supported: the spectral Eulerian solver from CCM [23], [27],
a spectral semi-Lagrangian solver [29], and a finite volume
semi-Lagrangian solver [24]. The three dycores do not use the
same computational grid. An explicit interface exists between
the dynamics and the physics, and the physics data structures
and parallelization strategies are independent from those in the
dynamics. A dynamics-physics coupler moves data between
data structures representing the dynamics state and the physics
state.

The development of CAM was (and continues to be) a large
community-wide effort. ORNL researchers are responsible for
many of the performance portability features in the spectral
Eulerian and spectral semi-Lagrangian dycores, most ported
from CCM/MP-2D, and in the physics [33]. The finite volume
dycore was originally developed at NASA, and most of the ini-
tial performance portability features were developed at NASA
Goddard and at Lawrence Livermore National Laboratory [25],
[26]. However, many individuals from many organizations
have contributed to the software engineering of CAM, notably
the CCSM Software Engineering Group at NCAR and David
Parks of NEC Solutions America, who is responsible for the
initial vectorization of many of the routines.

III. PERFORMANCEPORTABILITY FEATURES

We cannot do justice in this paper to the large number of
tuning options currently supported in CAM. For more details,
see [25], [26], [33]. Instead, we focus on those options that
have proved most useful in recent benchmarking exercises.

A. General

Along with the usual tuning option of compiler flags, CAM
has a number of code fragments, delimited bycpp directives,
that are enabled only for certain systems. For example, there
are a few routines for which we were unable to develop a
single version that runs well on both vector and nonvector
systems.cpp is used to choose either the vectorizable or the
cache-friendly versions of these routines.cpp is also used to
choose between math library routines with different calling
sequences, FFT routines primarily.

B. Physics

The physics uses the same computational grid as the dy-
namics. All three dycores employ a tensor product longitude-
latitude-vertical (nlon × nlat × nver) grid covering the
sphere. We refer to all grid points in this three-dimensional
grid with a given horizontal location, differing only in the
vertical coordinate, as avertical column, or just column.
The current physical parameterizations in CAM are based
on vertical columns, and physics computations at a given
timestep are independent between columns. The basic data
structure in the physics is thechunk, an arbitrary collection of
vertical columns. Grid points in a chunk are referenced by
(local column index , vertical index). A “chun-
ked” array is declared as(pcols , nver , nchunks) and the
loop structure is

do j=1,nchunks
do k=1,nver

do i=1,ncols(j)
(physical parameterizations)

enddo
enddo

enddo

Here
• ncols (j) is the number of columns allocated to chunk

j;
• nchunks is the number of chunks;
• pcols is the maximum number of columns allocated to

any chunk (specified at compile time).
Thus,pcols ·nchunks ≥ nlon ·nlat for a tensor-product
longitude-latitude grid, but there are no other assumptions
about the composition of a chunk. In particular, the columns
bundled in a given chunk may not be geographically contigu-
ous.

The primary physics tuning options are as follows.
1) The first option is the compile-time parameterpcols .

This determines the maximum number of columns
assigned to a chunk. (Depending on the number of
processors and number of columns,ncols(j) can
be less thanpcols .) Large pcols generates long
inner loops, which improve vectorization. Smallpcols
decreases the size of the basic computational unit, which
improves cache locality, and increases the number of
chunks. While increasing the number of chunks can in-
crease loop overhead, it also exposes additional OpenMP
parallelism and may help in load balancing between

BENCHMARKING USING CAM 3

OpenMP threads. The specific value ofpcols will
also determine the memory alignment of elements in the
chunked arrays, which has performance implications on
most systems.

2) The second option is the load-time specification of
the number of MPI processes and OpenMP threads
for a given total number of processors. The number
of OpenMP threads determines the number of chunks
to create. The same number of chunks are (usually)
assigned to all threads spawned by a given MPI pro-
cess. Approximately the same number of columns are
assigned to these chunks, so each thread is also assigned
approximately the same number of columns.

3) The third option is the runtime assignment of columns
to chunks. The time required to process a column is a
function of geographical location and simulation time,
and excellent static load balancing schemes are known.
However, the best load balancing scheme is at odds
with the domain decompositions utilized by the dycores
(described below), thus requiring significant interproces-
sor communication to implement. Four different load
balancing schemes are supported: balance load between
chunks assigned to the same MPI process (no interpro-
cess communication, load balancing only between local
OpenMP threads), between two MPI processes (only
pairwise interprocess communication required), between
MPI processes assigned to the same SMP node (only
intranode interprocess communication required), and the
best load balancing scheme (requiring all processes to
communicate with all other processes).

4) The fourth option is the runtime selection of commu-
nication protocol used to implement the interprocess
communication required by the load balancing scheme.
Possibilities include MPI collectives, 19 different MPI
two-sided point-to-point implementations, an MPI one-
sided point-to-point implementation, and a Co-Array
Fortran one-sided point-to-point implementation.

C. Spectral Dynamics

The spectral dycores currently support only a one-
dimensional decomposition of the computational grid, over
latitude initially. OpenMP parallelism can be exploited to
employ more processors in the physics than in the dynam-
ics when there is insufficient MPI parallelism to achieve a
performance goal. Each call of the spectral dynamics moves
back and forth between the longitude-latitude-vertical grid
point space and the spectral coefficient space. The dependen-
cies in these transforms require changing the decomposition
from one-dimensional over latitude to one-dimensional over
longitude and back again. A halo update is also needed in
the semi-Lagrangian advection scheme [30], andgather or
allgather collective communication operators are needed
to compute a number of diagnostic quantities. The primary
tuning option in the spectral dynamics is the choice of commu-
nication protocols for these interprocess communications. The
options are the same as for physics load balancing, described
earlier, but different choices can be made for the physics and
for the dynamics.

D. Finite Volume Dynamics

The finite volume dycore employs a two-dimensional block
decomposition of the computational grid. There are two
computational phases in this dycore. In one, the longitude
and latitude dimensions are decomposed. In the other, the
latitude and vertical dimensions are decomposed. Interprocess
communication is needed for remapping between the two
decompositions and for halo updates in the semi-Lagrangian
advection scheme.

The primary dynamics tuning options for this dycore are as
follows.
1,2) The first option is the runtime specification of the virtual

two-dimensional processor grid that defines the blocks for
the latitude-vertical domain decomposition. The second is
the runtime specification of the virtual two-dimensional
processor grid that defines the blocks for the longitude-
latitude domain decomposition. While independent, the
two choices should be considered together as they de-
termine the communication overhead when remapping
between decompositions. For example, it is generally best
to use the same number of processors to decompose the
latitude dimension in both decompositions. Note that a
one-dimensional decomposition over latitude is best for
small processor counts as it eliminates the need for a
remap.

3) The third option is the load-time specification of the
number of MPI processes and OpenMP threads for a
given total number of processors. As OpenMP and MPI
parallelism apply to the same loops in this dycore, the
optimum is a function of the OpenMP overhead and
the MPI communication overhead. The same settings
are used in both the physics and the dynamics, and the
performance impact in both will determine the optimum.

4) The fourth option is the communication protocol used for
the remap and halo update communications. The finite
volume dycore is built on top of a communication layer
called Pilgrim [26], which supplies different options
than those in the spectral dynamics and in the physics.
Six options are supported: two MPI two-sided point-to-
point implementations using either

– temporary contiguous send and receive buffers, or
– sending from and receiving into MPI derived types,

and four MPI one-sided point-to-point implementations
using one of

– mpi puts between temporary contiguous buffers on
source and target,

– direct mpiputs of contiguous segments into a tem-
porary contiguous window, with threading over the
segments,

– mpi puts of mpi derived types into a temporary
contiguous window, with threading over the target,
or

– mpi puts between mpi derived types at source and
target, with threading over the target

(Some versions ofPilgrim also support SHMEM [17],
and this has been introduced into the most recent version
of CAM.)

4 PROCEEDINGS OF THE 2006 SPEC BENCHMARK WORKSHOP, JAN. 23, 2006

IV. T UNING

The goal of the CAM benchmarking is to generate perfor-
mance scaling curves as a function of processor count for one
or more dycores and for one or more problem specifications.
As the optimal tuning setings can vary with dycore, problem
specification, and processor count, the large number of tuning
options can make fair benchmarking an arduous task. Here we
describe our approach to tuning CAM when benchmarking.

First, we use performance data from representative kernels
or from CAM on a small number of processors to reduce the
number of options that need to be examined when benchmark-
ing. In particular, we identify appropriate compiler options,
math library routines, communication layer and communica-
tion protocols, and chunk size (pcols).

Second, we organize the benchmarking in such a way as to
prune the search tree when a given option has been shown to
be uncompetitive. To eliminate start-up costs that would not be
typical of production runs, we time the code when simulating
one, two, and three simulation days, taking differences to
estimate seconds per day of simulation for longer runs. When
runtimes are small, we also verify these estimates with runs
for 30 simulation days. We use the one day runs to identify a
few good choices of the candidate tuning options and restrict
the longer runs to these near-optimal choices. We also use
scaling data to identify when options stop being competitive
and can be eliminated from further experiments. For example,
one-dimensional decompositions in the finite volume dynamics
are more efficient for small processor counts than the two-
dimensional decompositions. Initial experiments are used to
determine the point of crossover, and two-dimensional de-
compositions are used only for larger processor counts. The
search space pruning is applied to both the subset of options
identified in the first stage of the tuning and to the other, as
yet unexamined, options.

V. EXAMPLE RESULTS

In this section we describe results from recent benchmarking
exercises, quantifying the importance of tuning. Data were
collected on the following systems.

• Cray X1E cluster at ORNL: 256 4-processor symmetric
multiprocessor (SMP) nodes. Each processor is a Multi-
Streaming Processor (MSP) comprised of 8 32-stage
vector units running at 1130 MHz, 128 64-bit wide, 64-
element deep vector registers, and 4 scalar units running
at 565 MHz.

• Cray XT3 at ORNL: 5294 single processor nodes and a
custom interconnect. Each node is connected to a Cray
Seastar router through Hypertransport, and the Seastars
are interconnected in a 3D-torus topology. Each processor
is a 2.4 GHz AMD Opteron.

• IBM p690 cluster at ORNL: 27 32-processor p690 SMP
nodes and an HPS interconnect. Each node has two 2-link
network adapters. Each processor is a 1.3 GHz POWER4.

• IBM p575 cluster at the National Energy Research Scien-
tific Computing Center (NERSC): 122 8-processor p575
SMP nodes and an HPS interconnect. Each node has

one 2-link network adapter. Each processor is a 1.9 GHz
POWER5.

• SGI Altix 3700 at ORNL: non-uniform memory ac-
cess (NUMA) shared memory system in which two 2-
processor SMPs are connected to form aC-brick, with an
SGI NUMAlink interconnect between the C-Bricks. Each
processor is a 1.5 GHz Itanium2. The ORNL system has
256 processors.

The following experiments describe results for both
the spectral Eulerian and the finite volume dycores. For the
spectral dycore we used version 3.0.p1 of CAM, available from
http://www.ccsm.ucar.edu/models/atm-cam/ ,
and a problem with a horizontal grid of size256×128 and 26
vertical levels. This is the same problem resolution and CAM
dycore as used in the CCSM coupled climate model for the
fourth IPCC (Intergovernmental Panel on Climate Change)
assessments [22]. Because the spectral dycore supports only a
one-dimensional decomposition over latitude, the number of
MPI processes cannot be greater than 128 for this problem.
However more than 128 processors can be used if OpenMP
parallelism is exploited.

For the finite volume dycore we used version 3.1 of CAM,
available from the same URL, and a problem with a horizontal
grid of size576×361 and 26 vertical levels. The finite volume
dycore requires that at least three latitudes and three vertical
levels be assigned to each MPI process. For a one-dimensional
decomposition over latitude, this limits the number of MPI
processes to 120. For a two-dimensional decomposition, the
maximum number of MPI processes increases to 960.

In the rest of this section we describe some of the per-
formance sensitivities of the different platforms for these
problems and dycores. Note that we do not have the data
necessary to show how bad performance can be if poor choices
are made. The goal of the methodology described earlier is to
identify poor choices quickly and eliminate them from further
testing. Even some of the data described below could have
been eliminated if we had been more careful when collecting
data. We also do not show the sensitivities to compiler flags,
communication protocol, or runtime environment variables
(such as, for example, the memory and task affinity flags
on the IBM systems), which are some of the most important
optimizations, but are not unique to CAM.

Figure 1 shows the impact ofpcols on the performance
of the physics. The runtime for the physics for one simulation
day was measured for a variety of chunk sizes. These runtimes
were then normalized with respect to the runtime of the opti-
mal pcols setting for each platform. The two graphs contain
the same data, but use different axes limits and scalings. As
expected, the vector system prefers largepcols , while the
nonvector systems prefer smaller values. Performance on all
of the nonvector systems is relatively insensitive to the exact
pcols value as long as the extremes, both small and large,
are avoided. The optimal value for each system is as follows:
8 for the Altix, 24 for the P690, 34 for the XT3, 80 for the
P5-575, and 514 or 1026 for the X1. Note that performance
is degraded on many of the systems whenpcols is a power
of two and large.

BENCHMARKING USING CAM 5

 1

 2

 4

 8

 1 4 16 64 256 1024

n
o

rm
al

iz
ed

 p
h

ys
ic

s
ru

n
ti

m
e

pcols

Cray X1E
SGI Altix
IBM p690
Cray XT3
IBM p575

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 10 20 30 40 50 60 70 80 90

n
o

rm
al

iz
ed

 p
h

ys
ic

s
ru

n
ti

m
e

pcols

Cray X1E
SGI Altix
IBM p690
Cray XT3
IBM p575

FIGURE 1: Chunk size experiments

Figures 2 and 3 show the impact of different numbers
of OpenMP threads per process as a function of the total
number of processors. The total runtime for one simulation
day was measured on the IBM p690 cluster for both the
spectral Eulerian and finite volume dycores. For the finite
volume dycore, results are shown for both a one-dimensional
decomposition and a two-dimensional decomposition defined
by a virtual processor grid of size(P/4)× 4, whereP is the
number of MPI processes. Performance is already optimized
with respect to communication protocol, chunk size, and load
balancing in these experiments. The runtime is used to calcu-
late the computation rate in simulation years per wallclock
day. For these experiments the primary utility of OpenMP
parallelism is to increase the total number of processors
that can be used. For experiments with the spectral Eulerian
dycore, utilizing fewer threads is generally faster for a given
total number of processors. Exceptions occur when a particular
MPI process count leads to an uncorrectable load imbalance.
A similar result holds for the finite volume dycore and the
two-dimensional decomposition. For the finite volume dycore
and the one-dimensional decomposition, there is a crossover
point beyond which it is faster to not increase the number of
MPI processes, utilizing more OpenMP threads instead. Note
that the one-dimensional decomposition achieves a higher
computational rate than the two-dimensional decomposition,
up to 672 processors and for this problem size.

 1

 2

 4

 8

 32 64 128 256 512

si
m

u
la

te
d

 y
ea

rs
 p

er
 d

ay

processors

Spectral Eulerian Dycore
 1 thread
 2 threads
 4 threads
 8 threads

FIGURE 2: OpenMP experiments with spectral Eulerian
dycore on IBM p690 cluster

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700

si
m

u
la

te
d

 y
ea

rs
 p

er
 d

ay

processors

Finite Volume Dycore: 1D decomp.
 1 thread
 2 threads
 4 threads
 8 threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700

si
m

u
la

te
d

 y
ea

rs
 p

er
 d

ay

processors

Finite Volume Dycore: 2D (P/4)x4 decomp.
 1 thread
 2 threads
 4 threads
 8 threads

FIGURE 3: OpenMP experiments with finite volume dycore
on IBM p690 cluster

6 PROCEEDINGS OF THE 2006 SPEC BENCHMARK WORKSHOP, JAN. 23, 2006

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200

S
im

u
la

ti
o

n
 Y

ea
rs

 p
er

 D
ay

Processors

Cray X1E
 1D decomp.
 (P/4)x4 2D decomp.
 (P/7)x7 2D decomp.
Cray XT3
 1D decomp.
 (P/4)x4 2D decomp.
 (P/7)x7 2D decomp.
IBM p690 cluster
 1D decomp.
 (P/4)x4 2D decomp.
 (P/7)x7 2D decomp.

 0.25

 0.5

 1

 2

 4

 8

 16

 1 4 16 64 256 1024

S
im

u
la

ti
o

n
 Y

ea
rs

 p
er

 D
ay

Processors

Cray X1E
 1D decomp.
 (P/4)x4 2D decomp.
 (P/7)x7 2D decomp.
Cray XT3
 1D decomp.
 (P/4)x4 2D decomp.
 (P/7)x7 2D decomp.
IBM p690 cluster
 1D decomp.
 (P/4)x4 2D decomp.
 (P/7)x7 2D decomp.

FIGURE 4: Domain decomposition experiments

Figure 4 compares the performance of the one-dimensional
domain decomposition with two-dimensional domain decom-
positions defined by virtual processor grids of size(P/4)× 4
and (P/7) × 7, respectively, for the finite volume dycore.
Performance is already optimized with respect to communi-
cation protocol, chunk size, load balancing, and number of
OpenMP threads in these experiments. Results are presented
for three systems: the Cray X1E, the Cray XT3, and the IBM
p690 cluster. The computational rate for one simulation day
is plotted versus the number of processors. The two graphs
contain the same data, but use different axes scalings. For
the two Cray systems the two-dimensional decompositions
extend scalability and improve performance compared to the
one-dimensional decomposition when the one-dimensionsal
decomposition employs more than approximately 70 MPI pro-
cesses to decompose the latitude dimension. This latitude pro-
cess limit also determines when the(P/7)×7 two-dimensional
domain decomposition begins to outperform the(P/4)×4 two-
dimensional domain decomposition. For smaller latitude pro-
cess counts, the performance of the two-dimensional decompo-
sitions are approximately the same. Experiments on the Cray
systems did not use OpenMP parallelism. In contrast, OpenMP
parallelism was employed in the IBM p690 experiments.
OpenMP parallelism allows the number of MPI processes to
be kept no larger than 84 in the p690 cluster experiments, and
the one-dimensional decomposition results are always superior

to the two-dimensional decomposition results. Again, the two
two-dimensional decompositions demonstrate approximately
the same performance.

Figure 5 compares the performance of the different load
balancing schemes on the Cray XT3 and on the IBM p690
cluster for the finite volume dycore. Performance is already
optimized with respect to communication protocol, chunk size,
domain decomposition, and number of OpenMP threads in
these experiments. The graphs show the ratio of the runtime
for a given load balancing scheme to that of the minimum
runtime over all load balancing schemes for a given processor
count. On the p690 cluster, full load balancing is always best,
but no load balancing is at most 8 percent slower. On the Cray
XT3, full load balancing is usually best, but pairwise exchange
load balancing is never much worse. Here, no load balancing
is as much as 12 percent slower.

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 100 200 300 400 500 600 700 800 900 1000

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

processors

Cray XT3
 no load balancing
 pairwise exchange load balancing
 full load balancing

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 100 200 300 400 500 600 700

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

processors

IBM p690 cluster
 no load balancing
 pairwise exchange load balancing
 full load balancing

FIGURE 5: Load balancing experiments

We did not include a load balancing comparison for the Cray
X1E as full load balancing is always significantly better and
we did not collect the required data. While full load balancing
is typically best on these platforms, this is not true on all
platforms. In particular, systems for which interprocessor
communication bandwidth is low compared to processor speed
will likely not find full load balancing useful.

The final figure and tables are attempts to capture the impact
of all of the performance tuning options. Such a comparison
is difficult in that it requires defining the “default” options.

BENCHMARKING USING CAM 7

It is easy to make CAM run poorly on any given system, for
example, by settingpcols inappropriately. Figure 6 compares
optimal CAM performance for the spectral Eulerian dycore
with the performance when running CAM in the same way as
CCM, CAM’s predecessor, on the IBM p690 cluster and on the
Cray X1E. InCCM modeeach latitude line (subset of vertical
columns with a common latitude index) is a chunk (pcols ≡
258), OpenMP is not enabled, and no load balancing is used.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600

S
im

u
la

ti
o

n
 Y

ea
rs

 p
er

 D
ay

Processors

IBM p690 cluster
 optimized
 CCM mode

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

S
im

u
la

ti
o

n
 Y

ea
rs

 p
er

 D
ay

Processors

Cray X1E
 optimized
 CCM mode

FIGURE 6: Performance comparison between optimal and
default settings for spectral Eulerian dycore.

The optimal settings for the IBM p690 cluster are described
in Table 1. The load balancing and chunk size optimizations
result in significant performance improvements. Both load
balancing and increased serial performance due to the smaller
chunk size contribute to the performance enhancement for
small processor counts. For large processor counts, the small
chunk sizes (16, 24, 32 vertical columns) increase the amount
of OpenMP parallelism available compared to 256 column
chunks, improving scalability compared to runs with the CCM
settings. Note that full load balancing is not optimal in many
instances in these experiments.

The optimal settings for the Cray X1E are described in
Table 2. As performance for the vector length in CCM mode is
close to optimal, the differences in performance are primarily
due to load balancing. OpenMP parallelism was not exploited
in these runs. Partly this is because OpenMP has not been
tested extensively in the current port of CAM to the X1E.

MPI threads load improv. vs.
Proc. processes per process pcols balance CCM alg.
32 32 1 16 full 28%
64 64 1 16 pairwise 28%
96 96 1 24 full 36%
128 128 1 16 pairwise 25%
160 40 4 24 full 21%
192 48 4 24 pairwise 33%
256 128 2 16 full 47%
320 40 8 32 none 48%
384 48 8 24 pairwise 62%
512 128 4 16 pairwise 91%

TABLE I

OPTIMAL PERFORMANCESETTINGS FORIBM P690 CLUSTER FOR

SPECTRAL EULERIAN DYCORE

MPI threads load improv. vs.
Proc. processes per process pcols balance CCM alg.

8 8 1 1026 full 8%
16 16 1 1026 full 19%
32 32 1 1026 full 16%
64 64 1 514 full 15%
96 96 1 514 full 23%
128 128 1 258 full 17%

TABLE II

OPTIMAL PERFORMANCESETTINGS FORCRAY X1E FOR SPECTRAL

EULERIAN DYCORE

However, we do not expect OpenMP parallelism to increase
scalability much beyond 128 processors for this problem size.
For example, using 256 processors, say 128 MPI processes
and 2 OpenMP threads per process, will halve the number of
columns per chunk to 128. This decreases the vector length
of many loops in the physics to 128, which is half the vector
length of the X1E processor. Thus, while we would be using
twice as many processors, the performance of each processor
would be approximately halved in the physics.

There is no older version of CAM with the finite volume
dycore that can be used to define an experiment similar to
that described above, nor do we have sufficient performance
data for any default settings. Instead we simply report optimal
settings.

The optimal settings for the IBM p690 cluster for the finite
volume dycore are described in Table 3. In only one of the
examined cases did a two-dimensional decomposition (32x7
with one thread) outperform a one-dimensional decomposition
(112x1 with two threads), and then only slightly. Note that
the optimal value ofpcols increases with the number of
OpenMP threads. The reason for this is not clear, but the
performance impact was significant in some cases. Also note
that direct interprocessor communication between MPI derived
types was faster than copying into/out of temporary buffers.

The optimal settings for the Cray X1E for the finite volume
dycore are described in Table 4. For each experiment apcols
value was determined that would maximize the number of
columns per chunk subject to the restriction thatpcols ≤
1026 while also minimizing memory requirements. (pcols
larger than 1026 sometimes causes memory problems.) A
subset of the values was then selected that provided reasonable
coverage, simply to limit the number of executables gener-

8 PROCEEDINGS OF THE 2006 SPEC BENCHMARK WORKSHOP, JAN. 23, 2006

processor threads load derived
Proc. grid per process pcols balance types
32 32x1 1 16 full yes
64 64x1 1 16 full yes
96 48x1 2 16 full yes
128 64x1 2 16 full yes
224 32x7 1 24 full yes
256 64x1 4 24 full yes
448 56x1 8 32 full yes
512 64x1 8 32 full yes
672 84x1 8 32 full yes

TABLE III

OPTIMAL PERFORMANCESETTINGS FORIBM P690 CLUSTER FORFINITE

VOLUME DYCORE

processor threads load derived
Proc. grid per process pcols balance types
32 32x1 1 870 full no
48 48x1 1 870 full no
64 64x1 1 870 full no
96 24x4 1 870 full no
128 32x4 1 870 full no
192 48x4 1 990 full no
256 64x4 1 870 full no
336 48x7 1 630 full no
448 64x7 1 570 full no
672 96x7 1 330 full no

TABLE IV

OPTIMAL PERFORMANCESETTINGS FORCRAY X1E FOR FINITE VOLUME

DYCORE

ated for the benchmarking. As mentioned earlier, the one-
dimensional decomposition is superior until the number of
processes applied to the latitude dimension exceeds approx-
imately 70. A similar rule holds when comparing the two-
dimensional decompositions. For example, for 336 processors
the 48 × 7 virtual processor grid delivers better performance
than the84 × 4 processor grid. On the X1E sending from or
receiving into MPI derived data types degrades performance.

The optimal settings for the Cray XT3 for the finite volume
dycore are described in Table 5. A slightly larger value of
pcols than indicated earlier was found to perform best,
though any choice between 20 and 40 is likely to work well.
Performance is insensitive to the choice of communicating
directly between MPI derived data types or not. While full
load balancing was always optimal, the pairwise exchange load
balancing option performed equally well, in agreement with
the earlier discussion.

Benchmark experiments are not yet complete on the p575
cluster at NERSC, and results comparable to those from the
other systems were not available in time for inclusion in this
paper. Further Altix benchmarks will be run on the newer Altix
systems at NASA-Ames rather than on the ORNL system.

VI. CONCLUSIONS

In this paper we described briefly some of the tuning
options that make CAM a useful benchmark for evaluating
early systems. We also described a methodology that makes it
possible to tune CAM quickly when benchmarking. Even with
this methodology, tuning CAM for benchmarking is expensive,

processor threads load derived
Proc. grid per process pcols balance types
32 32x1 1 40 full yes
48 48x1 1 40 full no
64 64x1 1 40 full yes
96 24x4 1 40 full yes
128 32x4 1 40 full yes
192 48x4 1 40 full yes
256 64x4 1 40 full yes
336 48x7 1 40 full no
448 64x7 1 40 full yes
672 96x7 1 40 full yes

TABLE V

OPTIMAL PERFORMANCESETTINGS FORCRAY XT3 FOR FINITE VOLUME

DYCORE

but we feel that the improved fairness in the performance data
justifies the additional cost.

On the systems utilized in this paper, OpenMP and the two-
dimensional domain decompositions were primarily useful for
extending the number of processors that could be employed. In
contrast, load balancing and chunk size were important opti-
mizations for any processor count. While not mentioned in the
paper, communication protocol did not play an important role
in the sense that the obvious choices (using MPI collectives
for collective operations and MPISENDRECV for point-to-
point operations) performed well. The one exception was that
sending from and receving into MPI derived data types per-
formed poorly on the Cray X1E. The insensitivity to the choice
of communciation protocol is due to the high performance
of the interconnects and messaging libraries available on
the target systems. However, communication protocol options
have been very important performance enhancers in the past,
and we expect them to continue to be important performance
portability options in the future.

VII. A CKNOWLEDGEMENTS

This research used resources (Cray X1E, Cray XT3, IBM
p690 cluster, and SGI Altix) of the National Center for Com-
putational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725. It also
used resources (IBM p575 cluster) of the National Energy
Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098. We also gratefully
acknowledge our collaborators, too numerous to mention here,
in the performance engineering of CAM.

REFERENCES

[1] M. B. BLACKMON , B. BOVILLE , F. BRYAN , R. DICKINSON, P. GENT,
J. KIEHL , R. MORITZ, D. RANDALL , J. SHUKLA , S. SOLOMON,
G. BONAN, S. DONEY, I. FUNG, J. HACK , E. HUNKE, AND J. HURREL,
The Community Climate System Model, BAMS, 82 (2001), pp. 2357–
2376.

[2] W. D. COLLINS, P. J. RASCH, B. A. BOVILLE , J. J. HACK , J. R.
MCCAA , D. L. WILLIAMSON , B. P. BRIEGLEB, C. M. BITZ , S.-J.
L IN , AND M. ZHANG, The Formulation and Atmospheric Simulation
of the Community Atmosphere Model: CAM3, Journal of Climate, to
appear (2006).

BENCHMARKING USING CAM 9

[3] W. D. COLLINS, P. J. RASCH, AND ET. AL ., Description of the
NCAR Community Atmosphere Model (CAM 3.0), NCAR Tech Note
NCAR/TN-464+STR, National Center for Atmospheric Research, Boul-
der, CO 80307, 2004.

[4] COMMUNITY CLIMATE SYSTEM MODEL. http://www.ccsm.ucar.edu/.
[5] L. DAGUM AND R. MENON, OpenMP: : An industry-standard API for

shared-memory programming, IEEE Computational Science & Engi-
neering, 5 (1998), pp. 46–55.

[6] J. B. DRAKE, R. E. FLANERY, I. T. FOSTER, J. J. HACK , J. G.
M ICHALAKES , R. L. STEVENS, D. W. WALKER , D. L. WILLIAMSON ,
AND P. H. WORLEY, The message-passing version of the parallel
community climate model, in Parallel Supercomputing in Atmospheric
Science: Proceedings of the Fifth ECMWF Workshop on Use of Parallel
Processors in Meteorology, G.-R. Hoffman and T. Kauranne, eds., World
Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 500–513.

[7] J. B. DRAKE, I. T. FOSTER, J. G. MICHALAKES , B. TOONEN, AND

P. H. WORLEY, Design and performance of a scalable parallel com-
munity climate model, Parallel Computing, 21 (1995), pp. 1571–1591.

[8] J. B. DRAKE, S. HAMMOND , R. JAMES, AND P. H. WORLEY, Perfor-
mance tuning and evaluation of a parallel community climate model,
in Proceedings of the ACM/IEEE Conference on High Performance
Networking and Computing (SC99), Nov. 13-19, 1999, IEEE Computer
Society Press, Los Alamitos, CA, 1999.

[9] T. H. DUNIGAN , JR., Hypercube performance, in Hypercube Multi-
processors 1987, M. T. Heath, ed., Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1987, pp. 178–192.

[10] , Performance of a second generation hypercube, Tech. Rep.
ORNL/TM-10881, Oak Ridge National Laboratory, Oak Ridge, TN,
September 1988.

[11] , Communication performance of the Intel Touchstone DELTA
Mesh, Tech. Rep. ORNL/TM-11983, Oak Ridge National Laboratory,
Oak Ridge, TN, December 1991.

[12] , Performance of the Intel iPSC/860 and the Ncube 6400 hyper-
cubes, Parallel Computing, 17 (1991), pp. 1285–1302.

[13] , Kendall square multiprocessor: Early experience and perfor-
mance, Tech. Rep. ORNL/TM-12065, Oak Ridge National Laboratory,
Oak Ridge, TN, March 1992.

[14] T. H. DUNIGAN , JR., M. R. FAHEY, J. B. WHITE III, AND P. H. WOR-
LEY, Early Evaluation of the Cray X1, in Proceedings of the ACM/IEEE
Conference on High Performance Networking and Computing (SC03),
Nov. 15-21, 2003, IEEE Computer Society Press, Los Alamitos, CA,
2003.

[15] T. H. DUNIGAN , JR., J. S. VETTER, J. B. WHITE III, AND P. H. WOR-
LEY, Performance evaluation of the Cray X1 distributed shared-memory
architecture, IEEE Micro, 25(1) (January/February 2005), pp. 30–40.

[16] M. R. FAHEY, S. ALAM , T. H. DUNIGAN , JR., J. S. VETTER, AND

P. H. WORLEY, Early Evaluation of the Cray XD1, in Proceedings of
the 47th Cray User Group Conference, May 16-19, 2005, R. Winget and
K. Winget, ed., Eagen, MN, 2004, Cray User Group, Inc.

[17] K. FEIND, Shared Memory Access (SHMEM) Routines, in CUG 1995
Spring Proceedings, R. Winget and K. Winget, ed., Eagen, MN, 1995,
Cray User Group, Inc., pp. 303–308.

[18] W. GROPP, M. SNIR, B. NITZBERG, AND E. LUSK, MPI: The Complete
Reference, MIT Press, Boston, 1998. second edition.

[19] J. J. HACK , B. A. BOVILLE , B. P. BRIEGLEB, J. T. KIEHL , P. J.
RASCH, AND D. L. WILLIAMSON , Description of the NCAR Commu-
nity Climate Model (CCM2), NCAR Tech. Note NCAR/TN–382+STR,
National Center for Atmospheric Research, Boulder, Colo., 1992.

[20] M. T. HEATH, G. A. GEIST, AND J. B. DRAKE, Early experience
with the Intel iPSC/860 at Oak Ridge National Laboratory, Tech. Rep.
ORNL/TM-11655, Oak Ridge National Laboratory, Oak Ridge, TN,
September 1990.

[21] R. HOCKNEY AND M. B. (EDS.), Public International Benchmarks for
Parallel Computers, Parkbench Committee Report-1, Scientific Program-
ming, 3 (1994), pp. 101–146.

[22] INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE.
http://www.ipcc.ch/.

[23] J. T. KIEHL , J. J. HACK , G. BONAN, B. A. BOVILLE , D. L.
WILLIAMSON , AND P. J. RASCH, The National Center for Atmospheric
Research Community Climate Model: CCM3, J. Climate, 11 (1998),
pp. 1131–1149.

[24] S.-J. LIN, A ‘vertically Lagrangian’ finite-volume dynamical core for
global models, Mon. Wea. Rev., 132 (2004), pp. 2293–2307.

[25] A. M IRIN AND W. B. SAWYER, A scalable implemenation of a finite-
volume dynamical core in the Community Atmosphere Model, Interna-
tional Journal of High Performance Computing Applications, 19 (2005),
pp. 203–212.

[26] W. PUTMAN , S. J. LIN , AND B. SHEN, Cross-platform performance of
a portable communication module and the NASA finite volume general
circulation model, International Journal of High Performance Computing
Applications, 19 (2005), pp. 213–224.

[27] M. RANCIC, R. J. PURSER, AND F. MESINGER, A global shallow-water
model using an expanded spherical cube: gnomic versus conformal
coordinates, Q. J. R. Met. Soc., 122: 959-982 (1996).

[28] J. S. VETTER, S. R. ALAM , T. H. DUNIGAN , JR., M. R. FAHEY, P. C.
ROTH, AND P. H. WORLEY, Early Evaluation of the Cray XT3 at ORNL,
in Proceedings of the 47th Cray User Group Conference, May 16-19,
2005, R. Winget and K. Winget, ed., Eagen, MN, 2005, Cray User
Group, Inc.

[29] D. L. WILLIAMSON AND J. G. OLSON, Climate simulations with a
semi-lagrangian version of the NCAR Community Climate Model, Mon.
Wea. Rev., 122 (1994), pp. 1594–1610.

[30] D. L. WILLIAMSON AND P. J. RASCH, Two-dimensional semi-
Lagrangian transport with shape-preserving interpolation, Mon. Wea.
Rev., 117 (1989), pp. 102–129.

[31] P. H. WORLEY, MPI performance evaluation and characterization using
a compact application benchmark code, in Proceedings of the Second
MPI Developers Conference and Users’ Meeting, IEEE Computer So-
ciety Press, Los Alamitos, CA, 1996, pp. 170–177.

[32] , Performance evaluation of the IBM SP and the Compaq
Alphaserver SC, in Proceedings of the 14th International Conference
on Supercomputing, Association for Computing Machinery, New York,
NY, 2000, pp. 235–244.

[33] P. H. WORLEY AND J. B. DRAKE, Performance portability in the
physical parameterizations of the Community Atmosphere Model, In-
ternational Journal of High Performance Computing Applications, 19
(2005), pp. 187–202.

[34] P. H. WORLEY, T. H. DUNIGAN , JR., M. R. FAHEY, J. B. WHITE III,
AND A. S. BLAND , Early evaluation of the IBM p690, in Proceedings of
the IEEE/ACM SC2002 Conference, Nov. 16-22, 2002, IEEE Computer
Society Press, Los Alamitos, CA, 2002.

[35] P. H. WORLEY AND I. T. FOSTER, Parallel Spectral Transform Shallow
Water Model: a runtime–tunable parallel benchmark code, in Proc.
Scalable High Performance Computing Conf., J. J. Dongarra and D. W.
Walker, eds., IEEE Computer Society Press, Los Alamitos, CA, 1994,
pp. 207–214.

[36] P. H. WORLEY AND B. TOONEN, A users’ guide to PSTSWM, Tech.
Rep. ORNL/TM–12779, Oak Ridge National Laboratory, Oak Ridge,
TN, July 1995.

