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Abstract— In this paper, we propose BIOPERF, a definitive
benchmark suite of representative applications from the biology
and life sciences community, where the codes are carefully
selected to span a breadth of algorithms and performance char-
acteristics. The BIOPERF suite is available from www.bioperf.
org and includes benchmark source code, input datasets of
various sizes, and information for compiling and using the
benchmarks. We include parallel codes where available.

I. INTRODUCTION

In the 50 years since the discovery of the structure of DNA,
and with new techniques for sequencing the entire genome of
organisms, biology is rapidly moving towards a data-intensive,
computational science. Computational biology has been aided
by recent advances in both technology and algorithms; for
instance, the ability to sequence short contiguous strings of
DNA and from these reconstruct the whole genome [30],
[3], [29] and the proliferation of high-speed micro array,
gene, and protein chips [23] for the study of gene expression
and function determination. These high-throughput techniques
have led to an exponential growth of available genomic
data. For example, the National Center for Biotechnology
Information (NCBI) GenBank, an annotated collection of all
publicly available DNA sequences, has been growing at an
exponential rate with 56,037,734,462 bases from 52,016,762
sequences as of 15 December 2005 [18]. Bioinformatics allows
researchers to sift through the massive biological data and
identify information of interest. Today, biologists are in search
of bio-molecular sequence data, for its comparison with other
genomes, and because its structure determines function and
leads to the understanding of biochemical pathways, disease
prevention and cure, and the mechanisms of life itself.

Algorithms and applications in this new computational field
of biology are now one of the largest consumers of compu-
tational power for research and industry in pharmaceuticals,
biotechnology, and homeland security. Many problems use
polynomial-time algorithms (e.g., all-to-all comparisons) but
have long running times due to the large data volume to
process; for example, the assembly of an entire genome or the
all-to-all comparison of gene sequence data. Other problems
are compute-intensive due to their inherent algorithmic com-

plexity, such as protein folding and reconstructing evolutionary
histories from molecular data, that are known to be NP-
hard (or harder) and often require approximations that are
also complex [4]. Clearly, computer systems that can cost-
effectively deliver high-performance on computational biology
applications play a vital role in the future growth of the
bioinformatics market.

In order to apply a quantitative approach in computer
architecture design, optimization, and performance evaluation,
researchers need to identify representative workloads from
this emerging application domain. In this paper, we propose
BIOPERF, a definitive benchmark suite of representative ap-
plications that we have assembled from the biology and life
sciences community, where the codes are carefully selected to
span a breadth of algorithms and performance characteristics.
Currently, the BIOPERF suite contains codes from 10 highly
popular bioinformatics packages and covers the major fields of
study in computational biology such as sequence comparison,
phylogenetic reconstruction, protein structure prediction, and
sequence homology & gene finding. The BIOPERF suite
(available from www.bioperf.org) includes benchmark
source code, input datasets of various sizes, and information
for compiling and using the benchmarks. Our benchmark suite
includes parallel codes where available.

We are actively vetting the BioPerf suite with the com-
putational biology and life sciences community, for instance,
with a technical presentation at the 2005 Intelligent Systems of
Molecular Biology (ISMB) [9] and the 2005 IEEE Computa-
tional Systems Bioinformatics (CSB) [7] conferences, and also
a recent presentation at the IEEE International Symposium on
Workload Characterization (IISWC 2005) [5].

II. METHODOLOGY AND SELECTION OF CODES

The BIOPERF suite contains 10 packages and covers the
major fields of study in computational biology such as se-
quence comparison, phylogenetic reconstruction, protein struc-
ture prediction, and sequence homology and gene finding.
Only freely-available open-source codes are included in this
suite to ease its portability to new architectures and systems
and its dissemination.



The selection of codes follows these guiding principles:

• Coverage: The packages must span the heterogeneity
of algorithms and biological and life science problems
important today as well as (in our view) increasing in
importance over the next 5-10 years.

• Popularity: Codes with larger numbers of users are
preferred because these packages represent a greater per-
centage of the aggregate workloads used in this domain.

• Open Source: Open source code allows the scientific
study of the application performance, the ability to place
hooks into the code, and eases porting to new architec-
tures.

• Licensing: Only packages for which their licensing al-
lows free redistribution as open source are included. This
requirement eliminated several popular packages, but was
kept as a strict requirement to encourage the broadest use
of this suite.

• Portability: Preference was given to packages that used
standard programming languages and could easily be
ported to new systems (both in sequential and parallel
languages).

• Performance: We gave slight preference to packages
whose performance is well-characterized in other studies.
In addition, we strived for computationally-demanding
packages and included parallel versions where available.

Sequence comparison finds similarities between two or
more DNA or protein sequences. Phylogeny explores the
ancestral relationships among a set of genes or organisms.
Protein structure analysis (a) finds the similarities between
three-dimensional protein structures and (b) predicts the shape
of a protein (e.g., primary, secondary, and tertiary structure)
given its amino acid sequence. Gene-finding identifies DNA
segments that encode proteins.

Number Package Executable Codes
1 BLAST blastn, blastp
2 FASTA fasta34, ssearch34
3 CLUSTALW clustalw, clustalw smp
4 HMMER hmmsearch, hmmpfam
5 T-COFFEE tcoffee
6 GLIMMER glimmer2, glimmer-package
7 PHYLIP dnapenny, promlk
8 GRAPPA grappa
9 CE ce
10 PREDATOR predator

TABLE I

BIOPERF BENCHMARK SUITE

For each of these codes listed in Table I, we have assembled
benchmark source code, varying sizes of input datasets, and
information for compiling and using the benchmarks. As
algorithms for solving problems from computational biol-
ogy often require parallel processing techniques, we provide
parallel versions of four benchmarks. To facilitate computer
architecture researchers to run the BIOPERF suite on several
popular execution driven simulators, we also provide little-
endian Alpha ISA binaries and generated simulation points

[24] and PowerPC binaries [8] from the BIOPERF web page,
www.bioperf.org. The rest of this paper is organized as
follows. Section III discusses previous work on benchmark
collection. Section IV provides an introductory background
on biology and a brief review of bioinformatics study areas.
Section V describes the BIOPERF suite, including benchmark
functionality, input datasets and execution. Section VI dis-
cusses the packaging of the suite, and Section VII describes the
code arguments used to run the benchmark instance. Finally,
section VIII concludes the paper.

III. PREVIOUS WORK

One of the most successful attempts to create standardized
benchmark suites is SPEC (Standard Performance Evaluation
Corporation), which started initially as an effort to deliver
better benchmarks for workstations. Over the years, SPEC
evolved to cover different application classes, such as the
SPECSFS for the NFS performance and the SPECWeb for per-
formance of Web servers. Other examples of domain-specific
benchmarks include transaction-processing benchmarks TPC,
benchmarks for embedded processors such as the EEMBC
benchmarks and many others. One of the important benchmark
suites in the scientific research community is the SPLASH
(Stanford Parallel Applications for Shared Memory) suite, later
updated to SPLASH-2 [31]. SPLASH-2 includes mostly codes
from linear algebra and computational physics, and is designed
to measure the performance of these applications on central-
ized and distributed memory-machines. Few comprehensive
suites of computationally-intensive life science applications
are available to the computer architecture community. The
closest effort to ours is the development of BioBench [1].
Compared with BioBench, our independent work covers many
more bioinformatics tools in terms of quantity and diversity.
Also, our work includes parallel codes where available.

IV. BACKGROUND

To help readers understand the BIOPERF benchmarks better,
we first provide an introductory background on biology and
illustrate the major areas of bioinformatics.

A. Introduction: DNA, Genes and Proteins

One of the fundamental principles of biology is that within
each cell, DNA that comprises the genes encodes RNA which
in turn produces the proteins that regulate all of the biological
processes within an organism. DNA is a double chain of
simpler molecules called nucleotides, tied together in a double
helix helical structure. The nucleotides are distinguished by a
nitrogen base that can be of four kinds: adenine (A), cytosine
(C), guanine (G) and thymine (T). Adenine (A) always bonds
to thymine (T) whereas cytosine (C) always bonds to guanine
(G), forming base pairs. DNA can be specified uniquely by
listing its sequence of nucleotides, or base pairs. Proteins
are molecules that accomplish most of the functions of a
living cell, determining its shape and structure. A protein is
a linear sequence of molecules called amino acids. Twenty
different amino acids are commonly found in proteins. Similar
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to DNA, proteins are conveniently represented as a string
of letters expressing their sequence of amino acids. A gene
is a contiguous stretch of genetic code along the DNA that
encodes a protein. Not all parts of a DNA molecule encode
genes; some segments, called introns, have no influence on
protein synthesis. As a protein is produced, it folds into a
three-dimensional shape. For example, Fig. 1 shows the 3-D
structure of human foetal deoxyhaemoglobin. The positions
of the central atoms, called carbon-alpha (Cα), of the amino
acids of a protein define its primary structure. If a contiguous
subsequence of (Cα) atoms follows some predefined pattern,
they are classified as a secondary structure, such as alpha-
helix or beta-sheet. The relative positioning of the secondary
structures define the tertiary structure. The overall shape of all
chains of a protein then defines the quaternary structure.

Fig. 1. Three dimensional structure of human foetal deoxyhaemoglobin (PDB
id = 1FDH, produced from [21])

B. Bioinformatics Problems

In this section, we illustrate the major problems in bioin-
formatics, including sequence analysis, phylogeny, sequence
homology and gene finding, and protein structure analy-
sis/prediction.

1) Sequence Analysis: Sequence analysis is perhaps the
most commonly performed task in bioinformatics. Sequence
analysis can be defined as the problem of finding which parts
of the sequences (nucleotide or amino acid sequences) are
similar and which parts are different. By comparing sequences,
researchers can gain crucial understanding of their significance
and functionality: high sequence similarity usually implies
significant functional or structural similarity while sequence
differences hold the key information regarding diversity and
evolution. The most commonly used sequence analysis tech-
nique is pairwise sequence comparison. A sequence can be
transformed to another sequence with the help of three edit op-
erations. Each edit operation can insert a new letter, delete an
existing letter, or replace an existing letter with a new one. The
alignment of two sequences is defined by the edit operations
that transform one into the other. This is usually represented by
writing one on top of the other. Insertions and deletions (i.e.,
gaps) are represented by the dash symbol (“-”). The following

example illustrates an alignment between the sequences S1 =
GAATTCAGTA and S2 = GGATCGTTA. The objective
is to match identical subsequences as best as possible (or
equivalently use as few edit operations as possible). In the
example, the aligned sequences match in seven positions.

Sequence S1 GAATTCAGT-A
|R|D||D||I|

Sequence S2 GGA-TC-GTTA

Fig. 2. Alignment of two sequences that match in seven positions. One
replace, two delete, and one insert operations, shown by letters R, D, and I,
are used.

Alignment of sequences is considered in two different but
related classes: If the entire sequences are aligned, then it is
called a global alignment. If subsequences of two sequences
are aligned, then it is called a local alignment. Multiple
sequence alignment compares more than two sequences: all
sequences are aligned on top of each other. Each column is
the alignment of one letter from each sequence. The following
example illustrates a multiple alignment among the sequences
S3=“AGGTCAGTCTAGGAC”, S4=“GGACTGAGGTC”, and
S5=“GAGGACTGGCTACGGAC”.

Sequence S3 -AGGTCAGTCTA-GGAC
Sequence S4 --GGACTGA----GGTC
Sequence S5 GAGGACTGGCTACGGAC

Fig. 3. Multiple alignment of DNA sequences S3, S4 and S5

2) Sequence Homology and Gene Finding: Portions of
genomes could be seen as genomic entities spawned through
some dynamic changes in content and order of the ancestral
genome. Certain regions, through selection, are conserved over
time. Such genomic portions that are related due to their
derivation from the same element in a common ancestral
genome are termed homolog. Sequence homology study aims
to infer genome organization and structure, as well as the
evolutionary mechanisms that shaped present day genomes.
The sizes of biological sequence databases are usually very
large. Not all the sequences are coding, namely are a template
for a protein. For example, in the human genome only 3%–5%
of the sequences are coding. Due to the size of the database,
manual searching of genes who do code for proteins is not
practical. Gene-findings aim to provide computational methods
to automatically identify genes that encode proteins.

3) Molecular Phylogeny Analysis: Molecular phylogeny
infers lines of ancestry of genes or organisms. Phylogeny
analysis provides crucial understanding about the origins of
life and the homology of various species on earth. Phylo-
genetic trees are composed of nodes and branches. Each
leaf node corresponds to a gene or an organism. Internal
nodes represent inferred ancestors. The evolutionary distance
between two genes or organisms is computed as a function
of the length of the branches between their nodes and their
common ancestors.

3



4) Protein Structure Analysis: Two protein substructures
are called similar if their Cα atoms can be mapped to close-
by points after translation and rotation of one of the proteins.
This can also be considered as a one-to-one mapping of amino
acids. Usually, structural similarity requires that the amino
acid pairs that are considered similar have the same secondary
structure type. Structural similarities among proteins provide
insight regarding their functional relationship. Fig. 4 presents
the structural similarity of two proteins. Three-dimensional
structures of only a small subset of proteins are known as it
requires expensive wet-lab experimentation. Computationally
determining the structure of proteins is an important problem
as it accelerates the experimentation step and reduces expert
analysis. Usually, the relationship among chemical compo-
nents of proteins (i.e. their amino acid sequences) is used in
determining their unique three-dimensional native structures.

Fig. 4. The structural similarity between two proteins

C. Bioinformatics Databases

A bioinformatics database is an organized body of persis-
tent data (e.g. nucleotide and amino acid sequences, three-
dimensional structure). Thanks to the human genome project,
there has been a growing interest both in the public and
private sectors towards creating bioinformatics databases. At
the end of 2002, there were more than 300 molecular bi-
ology databases available worldwide. This section provides
a brief overview of several popular and publicly available
bioinformatics databases. An important class of bioinformatics
databases is the sequence database. The largest sequence
database is the NCBI/GenBank [18] which collects all known
nucleotide and protein sequences. Other major data sources
are EMBL (European Molecular Biology Lab) [13] and DDBJ
(DNA Data Bank of Japan) [11]. Two major sources of protein
sequences and structures are PDB (Protein Data Bank) [21],
and SWISS-PROT [26]. PDB contains the protein structures
determined by NMR and X-ray crystallography techniques.
SWISS-PROT is a curated protein sequence database which
provides a high level of annotation such as description of

protein function, its domain structure, post-translational mod-
ification and other useful information.

V. THE BIOPERF BENCHMARK SUITE

To allow computer architecture researchers to explore and
evaluate their designs on these emerging applications, we
developed BIOPERF, a suite of representative applications
assembled from the computational biology community, where
the codes are carefully selected to span a breadth of algorithms
and performance characteristics. Bioinformatics is a field for
which the problems themselves are not thoroughly categorized,
and many of the computational problems are NP-hard. This has
led to the development of heuristics to solve the problems,
giving sub-optimal results within a reasonable degree of a
accuracy quickly. Thus, the field is still in its infancy with
problems, algorithms, applications, and even system archi-
tecture requirements, changing frequently. The present suite
of tools should therefore be treated as a starting point. As
the field evolves, we expect the included codes and inputs to
evolve to encompass important emerging trends. Our endeavor
is to provide a representative set of codes and sample data that
encompass the field of bioinformatics in terms of the problems
it represents and the solutions which are devised for those
problems. We use this set of bioinformatics applications to
drive changes in computer architecture for high-performance
computing systems specifically targeted towards the compu-
tational biology applications. The packages used in BIOPERF

are handpicked from the following broad problems identified
by the biological community of interest to computer design-
ers: sequence alignment (pairwise and multiple), phylogeny
reconstruction, protein structure prediction, and sequence ho-
mology and gene-finding. For each of these codes, we have
assembled input datasets with varying sizes which can be used
in conjunction with the applications included in this suite. Due
to space limitations, this paper details a moderate-sized class
of input that allow each benchmark code to run for tens of
minutes. Other class sizes are available from the BIOPERF

web site for smaller and larger runs. Detailed, quantitative
workload characterization of the BIOPERF benchmarks on
different platforms can be found in [7], [8], [9], [16].

A. Sequence Analysis Benchmarks

• Blast: The Blast (Basic Local Alignment Search Tool)
programs [2] are a set of heuristic methods that are used
to search sequence databases for local alignments to a
query sequence. The Blast programs are written in C.
BlastP and BlastN are the versions of Blast for searching
protein and nucleotide sequences respectively. The query
file is the file which includes the nucleotide or protein se-
quence for search. The database file is the database which
will be searched. The blast implementation provided by
NCBI is multithreaded and contains a parameter to set
the number of threads.

• FASTA: Similar to Blast, FASTA [20] is a collection of
local similarity search programs for sequence databases.
FASTA is a two step algorithm. The first step is a search
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for highly similar segments in the two sequences. In this
search a word with a specific word size is used to find
regions in a two-dimensional table table similar to that
shown for the Smith-Waterman algorithm. These regions
are a diagonal or a few closely spaced diagonals in the
table which have a high number of identical word matches
between the sequences. The second step is a Smith-
Waterman alignment centered on the diagonals that cor-
respond to the alignment of the highly similar sequence
segments. While FASTA and Blast both do pairwise
local alignment, their underlying algorithms are different.
The query and database files for FASTA have the same
meaning as those of Blast. With the provided dataset, the
FASTA benchmark performs a query that contains the
human LDL receptor precursor protein. Another program
that we have included from the FASTA package is the
ssearch which does an exact Smith-Waterman alignment
on a pair of sequences.

• ClustalW: ClustalW [27] is a multiple sequence align-
ment program for nucleotides or amino acids. It first
finds a phylogenetic tree for the underlying sequences.
It then progressively aligns them one by one based on
their ancestral relationships. ClustalW combines several
heuristics for improved accuracy: weights are given to the
sequences implying their importance in the alignment.
Duplicate sequences are underweight while divergent
sequences are overweight. Amino acid substitution values
are changed in every step of the alignment. Improved
gap-handling algorithms especially during the early stage
of the algorithm also improved the accuracy of the
algorithm in general. ClustalX is a windows interface
for the alignments created by ClustalW [28]. ClustalW
is programmed in C and takes as input multiple DNA or
protein sequences and output the results after alignment.
Clustalw smp is a symmetric multiprocessor implemen-
tation of ClustalW.

• Hmmer: Hmmer [12] employs hidden Markov models
(profile HMMs) for aligning multiple sequences. Profile
HMMs are statistical models of multiple sequence align-
ments. They capture position-specific information about
how conserved is each column of the alignment, and
which residues are likely. Basically, you give HMMER
a multiple sequence alignment as input; it builds a sta-
tistical model called a “hidden Markov model” which
you can then use as a query into a sequence database to
find (and/or align) additional homologues of the sequence
family. Hmmer is programmed in the C language. It
includes several applications such as hmmbuild, hmm-
calibrate and hmmsearch. Among these applications, the
hmmsearch is widely used to search a sequence database
for matches to an HMM. The benchmark input is the
example HMM built from the alignment file of 50 aligned
globin sequences and a FASTA file of brine shrimp
globin, which contains nine tandemly repeated globin
domains. Hmmpfam [12] another program of the same
family, compares one or more sequences to a database of

profile hidden Markov models, such as the Pfam library,
in order to identify known domains within a sequence, us-
ing either the Viterbi or the forward algorithm. Hmmpfam
is a multithreaded program. The dataset we have provided
for hmmpfam performs the search of a transcriptional
regulatory protein of about 8800 residues against the
PFAM database.

• T-Coffee: T-Coffee [19] is a sequential multiple sequence
alignment similar to ClustalW, but which has been proven
to be more accurate than ClustalW, though with a higher
time complexity. T-Coffee enhances the progressive align-
ment of ClustalW with an internal library creation, and
uses both scores from aligning every sequence with other
sequences and the library for the alignment. T-Coffee uses
the familiar progressive approach to multiple sequence
alignment. It uses time consuming pre-processing steps to
guide through the alignment. As the authors point, inter-
mediate alignments are based not only on the sequences
to be aligned next, but also on the how all of the se-
quences align with each other. In this approach, they use
a combination of local and global pairwise alignments to
guide the alignments. The authors claim that the method
is reliable irrespective of the phylogenetic background of
the sequences to be aligned. The parameters we provide
for running T-Coffee set the dynamic programming mode
to Myers and Miller, which has linear space and quadratic
time complexity. The option -in specifies methods used
for library making (lalign id pair is the local alignment
using FASTA function and clustalw pair is the global
alignment using the Smith-Waterman algorithm). The
option tree mode = slow implies that similarity matrix
construction is performed by using dynamic program-
ming mode. The input file is 1yge 1byt (50 sequences of
average length 850) extracted from the Prefab database.

B. Sequence Homology and Gene Finding

• Glimmer: Glimmer (Gene Locator and Interpolated
Markov Modeler) [22] finds genes in microbial DNA.
Its uses interpolated Markov models (IMMs) to identify
coding and noncoding regions in the DNA. The Glimmer
system consists of two main programs. The first of these
is the training program, build-imm. This program takes
an input set of sequences and builds and outputs the
IMM for them. These sequences can be complete genes
or just partial orfs. For a new genome, this training data
can consist of those genes with strong database hits as
well as very long open reading frames that are statisti-
cally almost certain to be genes. The second program is
glimmer, which uses this IMM to identify putative genes
in an entire genome. Glimmer automatically resolves
conflicts between most overlapping genes by choosing
one of them. It also identifies genes that are suspected
to truly overlap, and flags these for closer inspection by
the user. These “suspect” gene candidates have been a
very small percentage of the total for all the genomes
analyzed thus far. Glimmer’s predictions as input to the
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BLAST and FASTA programs is thereby used for gene
annotation. Glimmer can be used for gene annotation by
inputting its predictions into BLAST and FASTA. The
input we provide for Glimmer is a kind of bacterium
whose name is Haemophilus influenzae and glimmer.icm
is the collection file of Markov models. Run-glimmer2
is a script included in the program, which runs programs
long-orfs and extract (extracts all non-overlapping open
reading frames), build-icm (build an interpolated context
model) and finally runs glimmer2 for a particular se-
quence. The input sequence used for this script is Bacteria
Bradyrhizobium japonicum genome consisting of about
9200 kilobase pairs.

C. Molecular Phylogeny Analysis Benchmarks

• Phylip: Phylip (PHYLogeny Inference Package) [14] is
a package of programs for inferring phylogenies (evolu-
tionary trees). Methods that are available in the package
include parsimony, distance matrix, maximum likelihood,
bootstrapping, and consensus trees. Data types that can be
handled include molecular sequences, gene frequencies,
restriction sites and fragments, distance matrices, and
discrete characters. Dnapenny and promlk are the typical
applications in Phylip. Dnapenny is a program that finds
all of the most parsimonious trees of the input data.
Promlk implements the maximum likelihood method for
protein amino acid sequences. They both can run in
command line method or interactive method. To provide
deterministic execution, we provide execution script to
invoke the two benchmarks. The additional dataset avail-
able to run promlk is the aligned 92 cyclophilins and
cyclophilin-related proteins from eukaryotes of average
length 220.

• GRAPPA: GRAPPA (Genome Rearrangements Analysis
under Parsimony and other Phylogenetic Algorithms) is
a program for phylogeny reconstruction [17]. To date,
almost every model of speciation and genomic evolution
used in phylogenetic reconstruction has given rise to
NP-hard optimization problems. GRAPPA is a reimple-
mentation of the breakpoint analysis [10] developed by
Blanchette and Sankoff, and also provides the first linear-
time implementation of inversion distances improving
upon Hannenhalli and Pevzner’s polynomial time ap-
proach [6]. Currently, GRAPPA also handles inversion
phylogeny and unequal gene content. The input file is 12
sequences of the bluebell flower species Campanulaceae.

D. Protein Structure Analysis Benchmarks

• CE: CE (Combinatorial Extension) [25] finds structural
similarities between the primary structures of pairs of
proteins. CE first aligns small fragments from two pro-
teins. Later, these fragments are combined and extended
to find larger similar substructures. The input we provide
for CE are different types of hemoglobin used to transport
oxygen.

• Predator: Predator [15] is a tool for finding protein
structures, and is based on the calculated propensities
of every 400 amino-acid pairs to interact inside an α-
helix or one upon three types of β-bridges. It then
incorporates non-local interaction statistics. Predator uses
propensities for α-helix, β-strand and coil derived form
a nearest neighbor approach. Our input for Predator
includes 100 Eukaryote protein sequences from NCBI
genomes database and results of the secondary structure
prediction. The additional dataset to run Predator is 19
sequences extracted from SWISS-PROT each of almost
7000 residues.

VI. BIOPERF PACKAGE

The installation directory of BIOPERF contain the following
directories:

• Binaries: Directory containing pre-compiled x86,
PowerPC and Alpha binaries, these binaries are con-
tained in separate subdirectories, Alpha-binaries,
x86-binaries (Linux) and PowerPC-binaries
(Mac OS). x86 and the PowerPC binaries are included
for all the executables, while Alpha binaries are not fully
included for all the codes. The subdirectories for each
of the platform further have directories for each of the
packages.

• Inputs: Directory containing all the inputs for each of
the executables. There are subdirectories for each of the
packages, and the inputs for each executable are further
categorized into class-A, class-B and class-C based on
the sizes of the inputs. Some of the input directories have
only one class of input, in which case there are no further
subdirectories. The larger databases Swissprot (71MB),
NR (1.46 GB) and Pfam (633 MB) are not included in
the Inputs directory and have to be separately downloaded
from the BIOPERF website. In case an attempt is made
to run a script for a executable which uses any of
these databases, the scripts will look for the databases
on the host machine in a directory represented by the
environment variable $DATABASES.

• Outputs: All the scripts in BIOPERF are set up to store
their output in this directory. The Outputs directory
itself has subdirectories by the name of each of the
packages.

• Scripts: This directory contains all the scripts used
in BIOPERF except the use-bioperf.sh which is
wrapper for all these scripts. It has further subdirectories
that include the scripts for running each of the codes
for small, medium and large datasets, scripts for com-
piling each of the codes, running the BIOPERF suite
and installing BIOPERF on the target architecture in case
the architecture’s binaries are not part of the BIOPERF

package. The script has separate subdirectories for each
of the tasks, but the naming itself is fairly intuitive.

• Simpoints: This directory contains the simulation
points using the Simpoint methodology to simulate the
representative workload execution phases.
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• Source-codes: This directory contains the source-
codes for each of the codes in BIOPERF. The directory
structure is same with subdirectories for each package,
and further with the executable for the packages having
more than one executable.

The following scripts are included in BIOPERF in the
Scripts directory:

• use-bioperf.sh: The wrapper for scripts
install-codes.sh, display-versions.sh,
run-bioperf.sh and CleanOutputs.sh. These
scripts are explained below.

• install-BioPerf.sh: installs the BIOPERF into the
directory specified by the user (explained in INSTALLA-
TION section).

• install-codes.sh: compiles the codes for an ar-
chitecture. In case the architecture is not x86 with
Linux OS, PowerPC with Mac OS, or Alpha, you
can use this script to compile the codes. This script
picks up the makefiles of the source codes from the
Source-codes directory, tries to do a make for each
of the codes and installs the compiled codes into a sub-
directory called $HOSTNAME/Binaries. It will also
create $HOSTNAME-scripts subdirectory inside the
directory Scripts, which can then be used to run the
newly compiled executables. In case the codes cannot be
compiled on the target architecture, the script will output
an error message telling the user which code failed to
compile.

• display-versions.sh: This script outputs the ver-
sions of all the installed codes in BIOPERF.

• run-bioperf.sh: This script is the basic run script
for BIOPERF.

A. How to Use BIOPERF

On successful installation, run the script
use-bioperf.sh located in the main directory
of BIOPERF suite to run all the supported asks in
BIOPERF. Note that $BRUN refers to the directory
$BIOPERF/Scripts/Run-scripts. The following
choices are available:

• [R] Run BIOPERF

• [I] Install BIOPERF on the user architecture
• [C] Clean Outputs in the user’s $BIOPERF/Outputs
• [D] Display versions of all installed codes

These choices are explained as follows.

• Run BIOPERF: If the user selects the option
[R], the BIOPERF suite is run through the script
$BRUN/run-bioperf.sh. The script prompts the
user for choosing either the platform, if the platform is
x86, ppc or alpha, it then gives two modes of running
BIOPERF: either the user can run all the codes one-by-
one, or the user can choose codes which would be run.
The user can then add packages to be run, with a prompt
for every package. After the packages have been selected,
the user is prompted for the size of the input datasets tp

use. When BIOPERF is subsequently run, it outputs time
of running for each executable and also the complete
execution time for running the suite with the selected
packages.

• Install BIOPERF on the user architecture: If the
user selects the option [I], the architecture’s bina-
ries are compiled and installed through the script
$BRUN/install-bioperf.sh. All the codes are
attempted to be compiled, and the script fails in case
any of the codes fails to compile. The script also tries
to first delete the previous installation if detected before
trying to proceed with the new installation. Assuming a
successful compilation for each of the packages, the same
subdirectory structure is maintained as in the x86 and the
PowerPC subdirectories also. This allows the main run-
bioperf.sh to use these executables just as they use x86
and the PowerPC executables.

• Clean Outputs: If the user selects the option [C], the
outputs in $BIOPERF/Outputs are deleted through
the script $BRUN/CleanOutputs.sh. All the scripts
in BIOPERF store the outputs generated in running the
executables in the Outputs directory, which has sub-
directories for each of the packages also. This increases
the size of the Outputs directory, and hence the script
deletes all the outputs previously generated.

• Display Versions: If the user selects the option
[D], the versions of all the software in the
BIOPERF suite are displayed through the script
$BRUN/display-versions.sh.

7



VII. BIOPERF PROGRAM OPTIONS FOR RUNNING

For each of the ten packages in BIOPERF, in Table II we provide the executable name, a brief summary of the code’s use,
and the arguments we use in our benchmark suite.

Code Summary Running Options
BLAST blastp searches for the homologues of ./blastall -p blastp -i Drosoph.txt
(blastp) an input amino acid sequence against a -d Drosoph/drosoph.aa -o outdd

database of amino acid -p -i input query file
(blastn) blastn searches for homologues of -d Database

input DNA sequences against a -o Output file
FASTA
(ssearch)

ssearch does an exact Smith-Watermann of an
input sequence with every sequence of an input
library printing the results

./ssearch34 t -a -b 20 -q -O <Output Alignment File>
< Input Sequence > < Input Library File >

-a Show entire length in alignment
-b Number of high scores to display
-q Quiet

(fasta34) fasta does a heuristic alignment of sequence with
database file

fasta34 < sequence file > < database file >

ClustalW
(clustalw)

Clustalw makes a multiple sequence alignment
of the unaligned sequences given

./clustalw < Unaligned sequences file >

clustalw Shared memory Clustalw clustalw smp <unaligned sequence file>
smp
T-Coffee T-Coffee makes a multiple sequence alignment

of unaligned sequences
./tcoffee < Input sequences file > -dp mode
= myers miller pair wise -in = lalign id pair,
clustalw pair -tree mode = slow
-dp mode = Dynamic programming mode is Myers
and Miller, linear space and quadratic time complex-
ity
-in = methods used for library making, lalign id pair
is the local alignment using FASTA function,
clustalw pair is the global alignment using the Smith-
Watermann.
tree mode = slow, similarity matrix construction done
using dynamic programming mode.

HMMER hmmbuild makes a profile hidden ./hmmbuild <Output HMM file >
(hmmbuild) markov model from aligned sequences < Input aligned sequences file >

hmmpfam searches for a sequence in a database
of profile HMM’s

./hmmpfam < HMM database > < Input sequence
>

(hmmpfam) database of profile HMM’s < Input sequence >
Glimmer
(glimmer-
package)

Finds genes in microbial DNA especially bacteria
and archea

./run-glimmer2 < genome file >

Glimmer glimmer2 < input sequence > < model file >
(glimmer) Finds genes in DNA given model file
Grappa Tool for phylogeny reconstruction ./grappa -f < Input file > -o < Output file > -m

-m Tighten circular lower bound
Phylip
(dnapenny)

Finds trees by parsimony ./dnapenny < scriptdnapenny > < output >

Protein Maximum Likelihood Program ./promlk < scriptproml > < output >
(Promlk) with molecular clock
CE Predicts structure by aligning 3D structures ce < PDB sequence 1 > < PDB sequence 2 >
Predator Predicts the 3D structure of a protein taking an

amino acid sequence as input
./predator < Input Sequence > -u -h -a -f< Ouput
file >
-u Do not copy assignment directly from the PDB
database if query sequence is found in PDB
-h Indicate progress by dots
-a Make prediction for all sequences in input file

TABLE II

BIOPERF PROGRAMS WITH RUNNING OPTIONS
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VIII. CONCLUSIONS

Bioinformatics applications represent increasingly impor-
tant computer workloads. In order to apply a quantitative
approach in computer architecture design and performance
evaluation, there is a clear need to develop a benchmark suite
of representative bioinformatics and life science applications.
This paper presents a group of programs representative of
bioinformatics software. These programs include popular tools
used for sequence alignments, molecular phylogeny analysis,
protein structure prediction, and gene finding. The BIOP-
ERF benchmark suite is freely available from the web site
www.bioperf.org. As the field of bioinformatics evolves,
we will extend BIOPERF to encompass important emerging
trends.
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