
The Advancement of NFS
Benchmarking: SFS 2.0

David Robinson – Sun Microsystems, Inc.

ABSTRACT

With the release of the Standard Performance Evaluation Corporation’s (SPEC) System File
Server (SFS) Release 1.0 benchmark suite in April 1993, the characterization of NFS server
performance grew from a small and not widely accepted set of benchmarks, to a single industry
standard benchmark. This paper will provide a historical look at the success of SFS 1.01 and
how it has driven server capabilities, describe SFS 1.0’s shortcomings, and detail the design and
rationale behind the development of SFS 2.0.

Terminology

The SFS benchmark suite has been referred to by
a number of different names that has lead to confu-
sion. For this paper, the term SFS shall refer to the
suite and in particular the framework used to drive the
workloads, SFS 1.0 or SFS 2.0. Each suite is com-
posed of one or more workloads which reflect the ver-
sion of protocol used. SFS 1.0 contains the 097.LAD-
DIS workload and SFS 2.0 contains the 162.nfsv2 and
163.nfsv3 workload. For this paper, the 097.LADDIS
workload will be referred to as LADDIS, and
162.nfsv2 and 163.nfsv3 as V2 and V3 respectively.

SFS 1.0

Background

SFS is a synthetic benchmark used to measure
the throughput and response time of an NFS server
over a variety of load levels. The benchmark uses
multiple physical clients, called load generators, each
containing multiple load generating processes. Each
load generating process is designed to represent multi-
ple real world clients. A load generating process con-
tains its own NFS and RPC protocol stacks, eliminat-
ing any effects due to different NFS client implemen-
tations, making it possible to use a variety of different
hardware and operating system platforms and still
have comparable results. The load generators send a
controlled stream of time-stamped NFS requests to the
server and measure the precise response times produc-
ing a detailed report of each type of operation, the
overall throughput and average response time. The
server is treated as a black box and the benchmark
relies on no services on the server beyond the standard
NFS protocol.

The SFS workload does not model any specific
user application or any specific environment, but is
designed to present the server with a series of requests
to simulate the aggregation of many different

1SPEC SFS 1.1 was a bug fix release in 1994 which made
no measurable changes to the workload. Both will be re-
ferred to as SFS 1.0 in this paper.

applications and clients. The workload was designed
through a series of studies of actual NFS traffic to
servers used in a wide variety of environments.

The basic framework of SFS 2.0 has not signifi-
cantly changed from the original SFS 1.0 release
described in detail in the 1993 Usenix paper by Whit-
tle and Keith [Whittle93]. The primary focus of SFS
2.0 was to update the accuracy of the workload and
this paper will focus on those changes.

Historical Perspective
The SPEC SFS 1.0 benchmark suite and its sole

component, the 097.LADDIS workload, has had a sig-
nificant impact of the NFS server market since its
introduction in April 1993. Prior to the release, evalu-
ation and specification of NFS servers were done
based on a number of small benchmarks that did not
adequately represent real world NFS servers. Some of
the problems included results that were greatly influ-
enced by the effects of the client operating system, the
lack of a defensible workload, and no common agreed
upon standards for testing and reporting of results. The
creation of the informal industry wide LADDIS group
to address the technical issues and the subsequent
incorporation with the SPEC standards body resulted
in a benchmark that was accepted by the industry as
fair and vendor neutral. The conventional wisdom
that if you measure it, it will improve, is validated by
the publication of results. Figure 1 shows a thirty fold
increase in throughput over the five years results were
published. This dramatic increase greatly exceeds the
increase in processor performance over the same
period. Using the often quoted figure of integer perfor-
mance increasing every 12 to 18 months, the actual
growth of LADDIS results exceeds this by a factor of
2 to 4. This growth can be attributed primarily to the
enhancement of system software in efficiency and
scalability on multiprocessor systems.

Another measure for the success of SFS has been
the demand for results. In addition to the purpose
built NFS servers, most vendors of general purpose
servers now include SFS as one of the standard met-
rics marketed at their initial product announcements.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 175

The Advancement of NFS Benchmarking: SFS 2.0 Robinson

Customers are also including the SFS metrics in their
minimum specification for both NFS and general pur-
pose server requests for proposals.

Although SFS was designed primarily to produce
competitive benchmarking results, the designed in
flexibility and tuneability of a wide variety of parame-
ters has enabled it to be used in the sizing of servers
and creating application specific workloads. This
capability has allowed both customers to evaluate their
specific environments and server vendors to tune their
systems for a multitude of applications.

0

5000

10000

15000

20000

25000

30000

35000

Jan-93 Aug-93 Mar-94 Sep-94 Apr-95 Oct-95 May-96 Dec-96 Jun-97 Jan-98 Jul-98

09
7.

L
A

D
D

IS
 o

p
s/

se
c

Figure 1: SPEC SFS 1.0 results published 1993-1998

Deficiencies
While SFS 1.0 has been extremely popular and a

success in the industry, a number of deficiencies were
known when it was released or subsequently discov-
ered during its lifetime.

Operations Mix

The basis of the default percentages of each NFS
operation (or operations mix) in the LADDIS work-
load was an unpublished 1986 study of the Sun
Microsystems engineering network and also validated
by a survey of customer nfsstat data from software
development and other similar technical computing
environments. The clients in the study were primarily
a homogeneous set of workstations which may not
reflect the differences in client implementations. Many
of the workstations in the study were diskless and had
relatively small amounts of physical memory resulting
in small caches with high paging and swapping rates

over NFS. Very few modern workstations are diskless
and now contain large physical memories, resulting in
large caches that reduce the need to swap over the net-
work. Casual observation of current server loads
appeared to indicate that the LADDIS operations mix
was too heavy on I/O operations.

Version 3 and TCP

Version 3 of the NFS protocol was finalized
shortly after the initial release of SFS 1.0. It provided
some compelling new features, including better file
system semantics and performance, resulting in it
being chosen as the default protocol version on most
major NFS vendor platforms. The benchmark, which
measured only NFS version 2, needed to be updated to
reflect what real customers were running in their envi-
ronment.

Simultaneous with the release of NFS version 3,
most vendors also introduced TCP as an available
transport. While NFS was designed to be transport
independent, there is some performance impact when
compared to UDP due to the added complexity of
managing a reliable transport compared to unreliable
transport. With many vendors also making TCP the
default transport, there was an increasing demand to
characterize that impact.

File Size

The size of files created in SFS 1.0 is uniformly
136 kilobytes (KB) in length. The original LADDIS
paper called this ‘‘unrealistic’’ but stated that it would

176 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Robinson The Advancement of NFS Benchmarking: SFS 2.0

have little impact on the performance model. With the
appearance of servers that were specifically optimized
for this size of file, the assertion was proven false and
needed to be addressed.

Latency Metric

Even though the SFS 1.0 reporting pages include
the response time at the peak throughput, the bench-
mark does not contain a metric to allow a fair compar-
ison of the overall responsiveness of servers. The pri-
mary competition between vendors at the time of the
release of SFS 1.0 was capacity, as no server was large
enough to handle even a moderate sized work group.
As server capacity (i.e., aggregate throughput as well
as large storage components) has grown to be able to
serve very large work groups, if not entire enterprises,
a secondary market arose competing for small to
medium size servers, using low response times as the
key differentiator. The lack of a response time metric
in SFS has limited customers ability to make fair com-
parisons in this new market.

Benchmark Portability

Great effort was taken to insure that SFS 1.0
could be run on a wide variety of client operating sys-
tems. While the source code was reasonably portable,
it still contained a number of dependencies on the
client’s native RPC implementation and used parts of
the client’s native NFS implementation to initialize the
file set. With the creation of 64-bit operating systems
this reliance on the client NFS and RPC became prob-
lematic. Better portability was essential to the contin-
ued success of SFS.

Design of SFS 2.0

The design and motivation for SFS 2.0 was
driven by two primary factors: creating a workload
that more accurately reflects real world servers and
updating it to support the recently released NFS ver-
sion 3. The philosophy of SPEC is to provide standard
benchmarks that reflect real world usage [SPEC],
unfortunately every synthetic benchmark is a compro-
mise. SFS 1.0 has a number of known deficiencies that
were intentionally not addressed before the benchmark
was released, and others that were discovered through
use. By addressing some of the more significant com-
promises, customers will have an increased confidence
in the reported results.

The changes required to update SFS 1.0 were
primarily in the workload generated by the benchmark
and the only minor changes were made to the frame-
work and test harness. This is a credit of the work of
the original designers.

NFS V2 Operations Mix

The LADDIS operations mix is roughly half file
name and attribute operations, one third I/O opera-
tions, and the remaining one-sixth spread among the
other operations. Throughout the years that SFS 1.0
was being used, the configuration of clients and the

implementation of operating systems has steadily
evolved. In the 1987 study, many clients were disk-
less, which is now relatively rare. Diskless clients
must page in applications and swap over the network,
resulting in a substantial number of I/O operations.
This was reflected in the mix by 37% of the operations
being reads or writes. Additionally, the average
amount of memory configured on a client has risen
from 16 or 32 megabytes (MB) of memory, to 128 MB
or more. The additional memory allows clients to
aggressively cache more data on the client, further
reducing I/O operations.

Based on the understanding of the change in the
nature of clients and some informal validation based
on actual observations, it was believed that the SFS
1.0 workload was too heavy with respect to I/O opera-
tions. A formal study was conducted to collect the
actual operations mixes of over 750 Auspex servers
running NFS V2.

A cluster analysis of the data collected was per-
formed using the SAS statistical tools to determine if
there were any significant common mixes present.
Only two dominant clusters emerged, the primary
cluster (75%) contained an operations mix that was
very similar to the existing LADDIS workload, but as
predicted, there was a significant reduction in the
number of I/O operations. It contained approximately
half the read operations and one third the write opera-
tions. The secondary cluster (15%) was very I/O inten-
sive and contained a significantly higher percentage of
read operations and a slightly higher percentage of
write operations than the existing workload. The
remaining 10% of the data was spread across a wide
variety of mixes, none of which were statistically
interesting.

Operation Cluster 1 Cluster2
null 1% 0%

getattr 25 15
setattr 1 1
lookup 40 23
readlink 7 2

read 11 32
write 5 17
create 2 1

remove 1 0
readdir 7 5
fsstat 1 2

Table 1: NFS V2 Mix Cluster Analysis.

The goal of SPEC benchmarks is to provide cus-
tomers with a workload that represents a common real
world environment. The cluster analysis clearly
showed one dominant operations mix, but from the
raw data it was not known if this represented one or
many types of environments. Each of the servers were
further categorized by the type of environment (e.g.,
software development, office, CAD) and a statistical

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 177

The Advancement of NFS Benchmarking: SFS 2.0 Robinson

correlation was run against the clusters. The primary
cluster surprisingly showed no significant correlation
to any specific type of environment. The secondary
cluster showed a correlation to the computer aided
design (CAD) environments. CAD is known to be
very I/O intensive as it reads and writes large design
data sets, confirming the correlation.

The default V2 workload was chosen to match
the primary cluster based on it representing the vast
majority of servers studied and the lack of correlation
to any one environment. A second workload matching
the secondary cluster was considered but ultimately
rejected. Although this cluster showed a strong corre-
lation to a CAD environment, the workload typically
consists of large sequential reads and writes which can
be more easily simulated by a simple copy benchmark.

Operation 097.laddis 162.nfsv2 163.nfsv3
getattr 13% 26% 11%
setattr 1 1 1
lookup 34 36 27
readlink 8 7 7

read 22 14 18
write 15 7 9
create 2 1 1

remove 1 1 1
readdir 3 6 2
fsstat 1 1 1
access - - 7

commit - - 5
fsinfo - - 1

readdirplus - - 9

Table 2: SFS Operation Mix

NFS V3 Operations Mix
At the time of the development of SFS 2.0, the

deployment of NFS V3 within the industry was not yet
widespread. Major operating system vendors had not
yet, or had only just recently, released support for V3.
The detailed statistical analysis used to derived the V2
workload was not possible due to the lack of a signifi-
cant installed base. Because support of V3 was a key
requirement for the release of SFS 2.0, a reasonable
approximation of a V3 workload was required.

The operations mix presented to the server repre-
sents the aggregation of the file system workload gen-
erated by applications running on clients and then con-
verted into NFS operations by the client operating sys-
tem. In moving from V2 to V3, the application work-
load remains constant, so a transformation from V2 to
V3 is possible if a typical client implementation is
known. Using the data from a published comparison
of a V2 and V3 client running the Andrew benchmark
[Pawlowski94] the V3 operations mix was partially
derived. The resulting mix was confirmed through a
survey of servers within the Sun engineering network
that served both V2 and V3 clients.

The V3 workload appears to be more data than
attribute intensive when compared to the V2

workload. This is a result of the the changes in the
underlying protocol, in particular, most V3 operations
return the attributes of a file, thus reducing the number
of getattr operations requested by the client. Through
the addition of the readdirplus operation that returns the
attributes with each directory entry, the number of
lookup operations is also reduced. The result of the
heavier V3 operations is a numerically smaller
throughput value even though the server can handle
more clients.

The commit operation had to be treated specially,
as the number of commits is derived from the number
of write operations and not measured experimentally. A
commit is generated by a client to request that a server
flush to stable storage any data written by previous
asynchronous write operations. The most common sce-
nario resulting in a commit operation is the closing of a
file, when the client wants to free up the resources it
may have been caching.

Within SFS, the write requests are typically the
same size as the file being written to simulate the
common practice of writing an entire file. These
requests are then broken down into one or more write
operations of the transfer size (8192 bytes) length. For
requests less than or equal to the transfer size, only
one write operation is generated and it is done syn-
chronously. For all other requests, the commit opera-
tion is generated after the final write to simulate the
close. With just over half of all write requests generat-
ing more than one write operation, 4% of the total
workload are commit operations.

Length (KB) Read Write
1-7 0% 49%
8-15 85 36
16-23 8 8
32-39 4 4
64-71 2 2

128-135 1 1

Table 3: SFS 2.0 Percentage of File I/O Operations.

File Set
The fundamental properties of the SFS 2.0 file

set has not changed from SFS 1.0. A large static set of
test files is created consisting primarily of regular data
files and directories and a small fixed number of sym-
bolic links. No files are shared between load generat-
ing processes which reflects the absence of sharing in
real world environments.

The number of data files and directories scales
with the requested load like SFS 1.0, but at a ratio of
10 MB of data for each NFS operation/second (op/sec)
instead of 5 MB per op/sec. The increase reflects the
actual growth in disk capacity and that disk usage
closely tracks the capacity growth. A larger file set
causes servers to further stress their caching algo-
rithms and disk seek times. The intention behind this
was to emulate real world server conditions.

178 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Robinson The Advancement of NFS Benchmarking: SFS 2.0

Working Set Size

From the large file set created, a smaller working
set is chosen for actual operations. In SFS 1.0 the
working set size was 20% of file set size or 1 MB per
op/sec. With the doubling of the file set size in SFS
2.0, the working set was cut in half to 10% to maintain
the same working set size. Although the amount of
disk storage grows at a rapid rate, the amount of that
storage actually being accessed grows at a much
slower rate. In the IBM study, discussed below, it was
found that only 12% of the storage was accessed
within the last five days. A 10% working set size may
still be too large. Further research in this area is
needed.

File size
(max. bytes)

Number Files Percent Files Percent Space

0K 101264 1.69% 0.00%
0.5K 1102362 18.36 0.49
1K 746062 12.43 0.33
2K 1252118 20.86 1.11
4K 776916 12.94 1.18
8K 622675 10.37 1.71
16K 461333 7.68 2.43
32K 317392 5.29 3.25
64K 226765 3.78 4.62
128K 159661 2.66 6.57
256K 104109 1.73 8.19
512K 77396 1.29 12.87
1024K 26553 0.44 8.47
2048K 14396 0.24 9.05
4096K 8659 0.14 10.75
8192K 3410 0.06 8.46
16384K 1420 0.02 7.03
32768K 616 0.01 5.93

> 65536K 231 0.00 7.56

Table 4: IBM File Size Distribution.

Variable Sized Files

The size of files created by SFS 1.0 was uni-
formly fixed at 136 KB. The fixed size allows for a
simpler implementation and a less complex selection
algorithm to determine which I/O file to use. The size
of 136 KB was chosen to be large enough to handle a
variety of starting file offsets for read and write opera-
tions, while ensuring that the file system on the server
allocates and references the first-level indirect file
index blocks. At the time, it was believed that this
compromise would have little impact on performance.
In addition, other studies performed showed that most
write operations are sequential, resulting in a high per-
centage (70%) of operations appending to a file.
Unfortunately the combination of fixed size files and
the high append ratio allowed servers to significantly
increase their results by optimizing the handling of the
first-level indirect file index blocks. Because most

files in the real world are small and do not utilize indi-
rect blocks, the increase in the benchmarking result
from this optimization did not translate into a real
world increase in performance. To solve this problem
the SFS 2.0 file set uses data files that are of varying
size.

A study was performed to determine a typical
distribution of file sizes. The IBM engineering net-
work containing over 6 million files and directories
with a total storage of over 210 billion bytes was used
as the basis of the study. For each file, the size, the
number of fragments, the last access time, the last
modification time, the length of the name, and the dis-
tribution of characters in the name, were recorded.

A simple statistical analysis showed that the
median file size was just under 2048 bytes with 76.7%
of the files under 8192 bytes. However, these files rep-
resented only 4.8% of the space consumed. Only 0.5%
of the files were over one megabyte, yet represented
48.8% of the space consumed. The data very closely
reflects a study performed three years earlier [Irlam94]
with a slight trend towards more files with larger sizes.

When the IBM study’s distribution is compared
to the SFS 1.0 file distribution, I/O performed on 136
KB files only represents less than 4% of the files, con-
firming the concerns about using fixed length files.
To address this problem SFS 2.0 creates a file set that
is composed of files varying in size from 1 KB to
1024 KB, a range that reflects the experimental data.
The read and write size distribution (Table 3) has not
changed from SFS 1.0, as a result the large 1024 KB
files are never accessed. Because these large files are

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 179

The Advancement of NFS Benchmarking: SFS 2.0 Robinson

such a low percentage of the total, no change in per-
formance is expected.

While the distribution of file sizes is correct, the
average file size is only 27 KB instead of the 37 KB
average found in the IBM experiment. This was not
noticed until after the release of the benchmark. A bet-
ter distribution would be to replace the one percent of
1024 KB files with one percent 2048 KB files.

0

5

10

15

20

25

0 2 8 32 12
8

51
2

20
48

81
92

32
76

8

13
10

72

52
42

88

20
97

15
2

83
88

60
8

33
55

44
32

13
42

17
72

8

53
68

70
91

2
%files
%space

Figure 2: IBM distribution of files by number and space.

Size
(Kbytes)

Percentage

1 33%
2 21
4 13
8 10

16 8
32 5
64 4

128 3
256 2

1024 1

Table 5: SFS 2.0 File Size Distribution.

File Selection

With all files in SFS 1.0 being fixed in size, the
selection of a file for an I/O operation within the
working set is done randomly with a uniform distribu-
tion. A serious problem resulting from this approach
was the common occurrence of a small read request
starting from the beginning or middle of a 136 KB

file. Many servers and disk subsystems are tuned
through read ahead algorithms for the common case of
an application reading a file from start to end. The
fixed size selection algorithm resulted in some servers
demonstrating worse benchmark than real world per-
formance.

The random selection of I/O files will not work
with the new variable file size distribution, as some
files may not be large enough to satisfy the request.
Both a first fit and a best fit algorithm would allow all
requests to be satisfied, but a best fit was chosen
because it would also maximize the number of whole
file reads and writes.

The variable file size distribution results in 67%
of all files being less than the 8 KB transfer size.
However, most modern NFS clients use an I/O subsys-
tem that is integrated with the virtual memory subsys-
tem, resulting in all I/O being rounded up to page size
requests. To simulate this common style of client, SFS
does not request the actual size of a small file, but
instead issues a full 8 KB read. When a request for a
read of less than 8 KB is made, any file less than 8 KB
is chosen on a first fit basis. This greatly simplifies the
selection algorithm while not materially changing the
load on the server.

Append ratio

Research at the time of the original SFS 1.0
release indicated that the ratio of writes appending to
files was as high as 90-95% in some environments
[Hartman92]. A simple explanation of this is the fact

180 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Robinson The Advancement of NFS Benchmarking: SFS 2.0

that most applications write a file from start to end.
Unfortunately it was found that the benchmark
became unstable due to uncontrolled growth of the file
set when append ratios higher than 70% where chosen.
SFS 2.0 maintains the same explicit append ratio but
the actual append ratio is higher through the combina-
tion of variable sized files, a best fit selection algo-
rithm, and most requests resulting in multiple sequen-
tial operations to the server. Although this better simu-
lates whole file writes, the append ratio is probably
still not high enough.

Multiple Directories

Each client in SFS 1.0 runs one or more load
generating processes, each with its own directory of
files to operate on. The directory is large and flat, con-
taining all of the files and empty directories. While
easy to implement in the benchmark, the main direc-
tory became unrealistically large under heavy loads
causing an over-emphasis on the server’s ability to
perform directory operations. SFS 2.0 solves this
problem by creating a new subdirectory for every 30
files created in the working set.

int clnt_poll(CLIENT *cl,
uint32_t usecs);

bool_t clnt_getreply(CLIENT *cl,
xdrproc_t xres, void *resp,
int cnt, uint32_t *xids,
uint32_t *xid,
struct timeval *tv);

Table 6: New client interfaces.

The IBM study showed that the mean number of
directory entries was 10 but the median was only 3,
significantly less than the 30 entries created by SFS.
To accurately implement this distribution would have
been fairly complex. The performance impact of this
compromise is considered to be low. The operations
most affected by directory size are lookup, readdir, and
readdirplus. Virtually all servers implement some form
of directory name lookup cache which minimizes the
effects of directory size on lookup operations. Con-
versely, using a small number of entries in a directory
would help the performance of readdir operations but
would not reflect some significant environments. By
choosing a fixed size of 30 entries, lookup operations
are not greatly effected by directory size and there are
enough entries to adequately test readdir performance.

The names of the files created in the file set were
changed to reflect the type of the file. This was done
to assist in trouble shooting benchmark problems as
well as to invalidate any potential server optimizations
based on the SFS 1.0 names. The average length of a
file name was set to 13 to reflect the results of the
IBM study which showed that over 50% of the files
had a name length between 8 and 12 characters. The
IBM study also provided the average occurrence of a
particular character within a file name. Although no

attempt was made to set the selection of characters in
a file name to match this distribution, the most com-
mon character, the period, was added to the names.
The current simple fixed naming scheme is still vul-
nerable to servers optimizing caches for the bench-
mark based on the names of files.

TCP

The NFS protocol is designed to be transport
independent, however until the early 1990 most imple-
mentations chose to only support the UDP transport.
Concurrent with the release of V3 implementations,
most vendors also introduced support of both V2 and
V3 over the TCP transport and many made TCP the
default. To provide customers with the ability to com-
pare servers running in these environments, support
for TCP was added to SFS 2.0.

Connection Management

There is no formal specification of how many
TCP connections should be made between a client and
a server. Some clients choose to have just one connec-
tion, others may have one per mount point, while
some user level clients may have one per file. SFS is
designed to present the server with the appearance of
many clients but only using a small number of actual
load generators, each generating a pseudo random set
of operations on a set of files. This is very effective at
hiding the number of real clients when using a proto-
col like UDP that has a single end point. However,
with a connection oriented transport like TCP, the
choice of how to model connections is quite impor-
tant.

Although there are multiple choices on how a
client should connect to a server, the majority of the
clients have only one connection to each server. This
is fortunate, because the aggregation of the operations
of many client processes over multiple mount points
can still be reasonably modeled using SFS’ pseudo
random operation selection. If one connection per
mount point, or worse one per file, were common, it
would have required SFS to introduce temporal effects
into the operation selection, a formidable task.

To simulate multiple connections, the existing
SFS 1.0 framework that supports multiple load gener-
ating processes on each load generator was used. Each
load generating process creates one connection to the
server. While the number of load generating processes
used on tests of very large systems is likely to be con-
siderably less than would occur in a real world envi-
ronment, the effects were not considered to be signifi-
cant in the results.

Implementing TCP

The addition of TCP to the SFS 2.0 code base
proved to be one of the more difficult challenges. A
primary feature of SFS is the ability to simulate client
asynchronous read-aheads and write-behinds, other-
wise known as BIOD emulation. Because of the
request/response nature of an RPC protocol, a client

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 181

The Advancement of NFS Benchmarking: SFS 2.0 Robinson

waiting for the result of an I/O operation to return
before issuing the next request, would suffer from
poor sequential performance. To minimize this prob-
lem, most clients break large I/O requests into multi-
ple concurrent requests and perform read-ahead or
write-behind.

To minimize the effects of the client operating
system and increase portability, SFS provides a full
NFS and RPC user level client. Unfortunately, for
portability reasons the client is single-threaded, mak-
ing BIOD emulation a challenge. To further com-
pound the problem, no freely available RPC library
provided the capability to send RPCs asynchronously
and gather replies. Ironically the existing libraries con-
tain a minimal attempt at sending asynchronous RPCs,
but fail to provide a reply gathering mechanism.

BIOD emulation was built using the freely avail-
able Sun RPCSRC 4.0. The standard clnt_call func-
tion was split into three pieces, the synchronous case
and two new asynchronous functions clnt_getreply
and clnt_poll. The standard clnt_call semantics were
extended to place the RPC’s transaction id in the result
buffer if a timeout of zero is specified, allowing the
caller to track multiple requests. The client can then
call the new clnt_poll with the list of transaction ids to
wait on a reply. When a reply is available clnt_getre-
ply is called to process one request. The client pro-
vides as arguments an array of transaction ids being
waited upon and if the clnt_getreply is successful, it
returns the transaction id of the reply that was pro-
cessed. The client can then repeat the process until all
outstanding requests are processed.

Transport Specific Metrics

The choice of using TCP or UDP as the transport
layer will have an impact on the performance of NFS.
It is generally believed that UDP as a lighter weight
protocol will offer better performance on a local net-
work where packet loss is (nowadays) extremely rare,
while TCP, with its reliable nature, will offer better
performance on a wide area network, where packet
loss is not uncommon.

The interesting question was whether to create an
additional transport specific metric for both V2 and
V3 or not. Because there is a measurable difference
between transports, some considered it unfair to com-
pare a TCP result against a UDP result. However, the
workload presented to the server is independent of the
transport. If the performance effects caused by choice
of transport layer are compared to the performance
effects caused by choice of network media, many sim-
ilarities exist. An FDDI ring will have lower latencies
than a 10BaseT Ethernet and a network adapter that
does on board protocol processing will have higher
throughput than one without. In these cases no distinc-
tion in the metric is made and therefore the choice of
transport is also not reflected in the metric. The trans-
port is clearly presented in the full results report
allowing an informed comparison to be made.

Overall Response Time Metric
The official abbreviated form of an SFS 1.0

results report is the throughput in operations per sec-
ond at a peak response time in milliseconds. While the
primary throughput metric is easily understood and
comparable between systems, the response time is
poorly understood and is occasionally misused in the
marketing or interpretation of results. The response
time reported is simply the response time at the maxi-
mum throughput with the only condition that it can not
exceed 50 milliseconds. To compare the peak
response time of two results only shows how the sys-
tem degrades under maximum load and is no reflec-
tion on how the system response during typical loads
experienced by most customers.

As the capacity of most NFS servers has grown
dramatically, the aggregate throughput of the server
has become a secondary consideration for many envi-
ronments. The responsiveness of the server becomes
more important as it contributes to the throughput of
sequential operations as well as the subjective ‘‘feel’’
experienced by end-users sitting at NFS clients.

In comparing two SFS results, the shape of the
curve is an indication of how the server responds over
the entire load range. A curve that is flat and close to
the x-axis indicates a server that is consistently fast
over a wide range of loads. The challenge was to cre-
ate a meaningful single metric that captured the qual-
ity of the graph. The area under the curve divided by
the peak throughput was chosen as the new SFS 2.0
metric called the Overall Response Time, calculated
by using the Riemann sum:

O. R. T. =

n

0
Σ 


Ri + Ri−1

2
* (Ti − Ti−1)

Tn

Run Rules
A critical component of any SPEC benchmark

are the run and disclosure rules which allow customers
to make fair comparisons between competing vendors.
To the credit of the original SFS 1.0 benchmark, only
a few significant changes were required for SFS 2.0.

Response Time

The throughput of a system is the primary metric
for comparison between two competing vendors, but
at some point additional throughput is overwhelmed
by the degradation in response time. The maximum
reportable response time was set in SFS 1.0 to the
some what arbitrary value of 50 milliseconds. The
choice was based primarily on the human sensitivity
of response time. Following the decrease in both net-
work and disk latency, the maximum reportable
response time was decreased to 40 milliseconds in
SFS 2.0.

Warmup and Runtime

SFS load generation is split into two phases, warmup
and runtime. The warmup phase is required to allow
the benchmark to make initial requests and adjust the

182 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Robinson The Advancement of NFS Benchmarking: SFS 2.0

inter-request sleep interval to achieve the requested
load level. As vendors gained experience with SFS
1.0, it was observed that in some configurations the
benchmark would not converge on a steady

SPECsfs97 Result
 Copyright 1997, Standards Performance Evaluation Corporation

SPECsfs97.v2 =
6104 Ops/Sec (Overall Response Time = 2.34 msec)

Blaster Server Inc.
Ultra SuperBlaster 2001

Tested: Sep 1999 By: Blaster Server Inc. License #: 666 Hardware Avail: Sep 1999 Software Avail: Sep 1999

contact
Information
For More

Manassas, VA 20109
10754 Ambassador Drive, Suite 201

SPEC

http://www.spec.org/
info@spec.org

(703) 331-0180

Throughput Average
Response

(ops/sec) (msec)

530 1.7
1171 2.0
1602 2.3
2150 2.3
2700 2.4
3240 2.4
3780 2.5
4320 2.5
4860 2.7
5450 2.9
6104 4.1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)

Throughput (ops/sec)

Overall Response Time= 2.34 msec

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000 7000

CPU, Memory and Power
Ultra SuperBlaster 2001Model Name:
4 GHz SB Mach 3Processor:
2# of Processors:
16KBI+512KBD on chipPrimary Cache:
1GB(I+D) off chipSecondary Cache:
N/AOther Cache:
N/AUPS:
N/AOther Hardware:
20 GBMemory Size:
512 MBNVRAM Size:
StaticNVRAM Type:
Nuclear PoweredNVRAM Description:

Server Software
CPM 3.0OS Name and Version:
N/AOther Software:
FAT16File System:
2NFS version:

Network Subsystem
1000Mbit GigabitEthernetNetwork Type:
GigabitEthernet PCI adaptor 2.0Network Controller Desc.:
1 (N1)Number Networks:
1Number Network Controllers:
UDPProtocol Type:
1 Blaster 3 switchSwitch Type:
N/ABridge Type:
N/AHub Type:
N/AOther Network Hardware:

Server Tuning
DynamicBuffer Cache Size:
945# NFS Processes:
57.3 GBFileset Size:

Disk Subsystem
3Number Disk Controllers:
136Number of Disks:
132 (F1-F132)Number of Filesystems:
defaultFile System Creation Ops:
defaultFile System Config:

On-board SCSI-IIIDisk Controller:
1# of Controller Type:
4Number of Disks:
9GB 7200rpm SCSI-IIIDisk Type:
OS, swapFile Systems on Disks:

Special Config Notes:

On-board SCSI-IIIDisk Controller:
11# of Controller Type:
66Number of Disks:
9GB 7200rpm SCSI-IIIDisk Type:
F1-F66File Systems on Disks:

Special Config Notes:

On-board SCSI-IIIDisk Controller:
11# of Controller Type:
66Number of Disks:
9GB 7200rpm SCSI-IIIDisk Type:
F67-F132File Systems on Disks:

Special Config Notes:

Page 1 of 2

Figure 4: SFS 2.0 Reporting Page

request rate within the one minute warmup time
resulting in an undesirable variance in reported results.
For SFS 2.0, the warmup time was increased to five

minutes to ensure stability of the request rate. Addi-
tionally it was observed that during the last five min-
utes of the ten minute runtime, the request rate was
extremely stable and the results were unaffected by
decreasing the runtime to five minutes. The increase in
the warmup time may cause large servers to better
cache the working set, it is hoped that the decrease in

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 183

The Advancement of NFS Benchmarking: SFS 2.0 Robinson

the runtime will lessen any opportunity to exploit the
cache.

Clients per Network

The SFS 1.0 run rules require that there be at
least two clients per network used in the test configu-
ration. The initial intent was to ensure that clients
would realistically experience collisions on ethernet
networks. A few factors have emerged to make this
requirement unnecessary. The wide spread shift from
fat yellow ethernet cable and thin-net to switching
twisted pair intelligent hubs have greatly reduced the
chances that a client on a heavily loaded ethernet will
experience a significant number of collisions. Even on
a network with collisions, the effects of the physical
layer arbitration does not change the maximum capac-
ity of a server. When a client backs off from a colli-
sion, it increases the response time for a given opera-
tion but does not decrease the capacity of the server, as
the back off is handled in hardware without interven-
tion of the main processor. The collision does decrease
the available network bandwidth, but with the addition
of another network interface the same server can han-
dle the same capacity whether the network is switched
or not. With the goal of SFS to measure server capac-
ity, the mandating of network topology has proven to
be unnecessary.

Future Work

SFS 2.0 was able to solve a number of the flaws
in the original SFS 1.0 benchmark and update the
workload to more closely reflect real world usage.
However there are still a number of significant areas
for future work. Most important is another study of V3
servers, similar to what was performed for V2 servers,
to validate the operations mix. In the time since the
release of the benchmark, it appears that the mix of
directory reads may need to be adjusted. The algo-
rithms used by clients to determine when to issue a
light weight readdir request, versus a readdirplus
request, is still evolving and moving towards minimiz-
ing the number of readdirplus operations.

The SFS framework is designed to provide the
correct operations mix and I/O sizes based on studies
that represent the cumulative history of the server. The
random selection does not take into account the tem-
poral nature of file access. The next file accessed is
more likely to be the same file, or a file in the same
directory, than a file randomly selected from the work-
ing set. Two possible solutions would be to study the
sequences of requests made to servers to determine
any significant patterns, or to switch from a random
selection with a Poisson distribution to a Markoff dis-
tribution.

SFS began as a benchmark that used the client
system calls to generate network traffic. It has become
client independent, generating network traffic directly.
The reduction in client sensitivity allows for very fair
comparisons of two servers using the same protocol.

But customers are asking for comparisons of the same
server using different protocols. To accomplish this a
protocol independent benchmark that either calls the
client system calls directly or drives real or pseudo
applications. The challenge of such a benchmark is to
determine what a representative workload is and to
manage client side effects so the server is being fairly
tested. The Andrew benchmark was an early attempt
at a protocol independent benchmark.

Acknowledgments

The author would like to acknowledge the mem-
bers of the SFS steering committee who spent many
hours collecting data, analyzing it, testing the code,
and most importantly, arguing about it. In particular,
Kamesh Gargeya, Sherry Hoffman, Joan Lawler, Tony
Lukes, Brian Pawlowski, Judy Piantedosi, Spencer
Shepler, Pete Smoot, and Andy Watson.

This paper is dedicated to the memory of Terry
Flynn who provided most of the statistical analysis
which is the basis of SFS 2.0.

Author Information

David Robinson is a Senior Staff Engineer in the
Solaris Networking Technology Group at Sun
Microsystems, Inc. He has been the primary author of
the SFS 2.0 benchmark suite, and founder of the SPEC
SFS steering committee. He has been active in the
NFS development community for since 1986. Prior to
Sun, he worked at the Jet Propulsion Laboratory
where he developed one of the first NFS servers for
VMS to allow workstations to access large satellite
images. Reach him via U.S. Mail at Sun Microsys-
tems, Inc., MS MPK17-201, 901 San Antonio Rd,
Palo Alto, CA 94303. Reach him electronically at
<robinson@eng.sun.com>.

References

[Baker91] Baker, Mary G., ‘‘Measurement of a Dis-
tributed File System,’’ Proceedings of the 13th
Symposium on Operating System Principles, pp.
198-212, October 1991.

[Callaghan95] Callaghan, Brent, et al., ‘‘RFC1813,
NFS Version 3 Protocol Specification,’’ June
1995.

[Hartman92] Hartman, John, ‘‘File Append vs. Over-
write in a Sprite Cluster,’’ Sprite Project, Univer-
sity of California at Berkeley, Presentation to the
LADDIS Group, Jan 21, 1992.

[Irlam94] Irlam, Gordan, http://www.base.com/gor-
doni/ufs93.html, An informal study of Unix file
sizes from data gather via Usenet, Sept, 1994.

[Keith90] Keith, Bruce, ‘‘Perspectives on NFS File
Server Performance Characterization,’’ Proceed-
ings of the Summer 1990 USENIX Conference,
pp. 267-277, June, 1990.

[Pawlowski94] ‘‘NFS Version 3 Design and Imple-
mentation,’’ Proceedings of the Summer 1994
USENIX Conference, June, 1994.

184 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Robinson The Advancement of NFS Benchmarking: SFS 2.0

[Sandberg85] Sandberg, Russell, et al., ‘‘Design and
Implementation of the Sun Network File Sys-
tem,’’ Proceedings of the Summer 1985 USENIX
Conference, pp. 119-130, June, 1985.

[SPEC] Standard Performance Evaluation Corporation
(SPEC) web site, http://www.spec.org/ .

[Sun89] Sun Microsystems, ‘‘RFC1094, NFS,’’
March, 1989.

[Watson92] Watson, Andy, et al., ‘‘LADDIS: Multi-
Vendor and Vendor-Neutral SPEC NFS Bench-
mark,’’ Proceedings of the LISA VI Conference,
pp. 17-32, October, 1992.

[Whittle93] Whittle, Mark, et al., ‘‘LADDIS: The
Next Generation In NFS File Server Benchmark-
ing,’’ Proceedings of the 1993 USENIX Confer-
ence, 1993.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 185

186 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

