SPEC CPU®2017 Floating Point Rate Result

Inspur Corporation

Inspur NF5180M6 (Intel Xeon Gold 5317)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>238</td>
</tr>
</tbody>
</table>

Cpu2017 License: 3358
Test Date: Aug-2021
Test Sponsor: Inspur Corporation
Hardware Availability: May-2021
Tested by: Inspur Corporation
Software Availability: Dec-2020

<table>
<thead>
<tr>
<th>Copies</th>
<th>0</th>
<th>30.0</th>
<th>60.0</th>
<th>90.0</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
<th>390</th>
<th>420</th>
<th>450</th>
<th>480</th>
<th>510</th>
<th>540</th>
<th>570</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>48</td>
<td>24</td>
<td>153</td>
<td>285</td>
<td>227</td>
<td>211</td>
<td>221</td>
<td>179</td>
<td>356</td>
<td>354</td>
<td>108</td>
<td>120</td>
<td>542</td>
<td>546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>48</td>
<td>153</td>
<td>227</td>
<td>285</td>
<td>211</td>
<td>221</td>
<td>179</td>
<td>356</td>
<td>354</td>
<td>108</td>
<td>120</td>
<td>542</td>
<td>546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>519.libm_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>48</td>
<td>134</td>
<td>151</td>
<td>231</td>
<td>180</td>
<td>194</td>
<td>200</td>
<td>120</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** Intel Xeon Gold 5317
- **Max MHz:** 3600
- **Nominal:** 3000
- **Enabled:** 24 cores, 2 chips, 2 threads/core
- **Orderable:** 1,2 chips
- **Cache L1:** 32 KB I + 48 KB D on chip per core
- **L2:** 1.25 MB I+D on chip per core
- **L3:** 18 MB I+D on chip per chip
- **Other:** None
- **Memory:** 1 TB (32 x 32 GB 2Rx4 PC4-3200AA-R, running at 2933)
- **Storage:** 1 x 4 TB NVME SSD
- **Other:** None

Software

- **OS:** Red Hat Enterprise Linux release 8.2 (Ootpa)
- **Version:** 4.18.0-193.el8.x86_64
- **Compiler:** C/C++: Version 2021.1 of Intel oneAPI DPC++/C++
- **Version:** Compiler Build 20201113 for Linux;
- **Compiler Classic Build:** Compiler Classic Build 20201112 for Linux;
- **Fortran:** Version 2021.1 of Intel Fortran
- **Compiler Classic Build:** Compiler Classic Build 20201112 for Linux
- **Parallel:** No
- **Firmware:** Version 05.00.00 released Apr-2021
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc memory allocator V5.0.1
- **Power Management:** BIOS and OS set to prefer performance at the cost of additional power usage.
SPEC CPU®2017 Floating Point Rate Result

Inspur Corporation

Inspur NF5180M6 (Intel Xeon Gold 5317)

SPEC CPU®2017 fp_base = 234

SPEC CPU®2017 fp_peak = 238

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Base Seconds</th>
<th>Base Ratio</th>
<th>Peak Seconds</th>
<th>Peak Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>48</td>
<td>864</td>
<td>557</td>
<td>864</td>
<td>556</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>48</td>
<td>197</td>
<td>309</td>
<td>197</td>
<td>308</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>48</td>
<td>299</td>
<td>153</td>
<td>299</td>
<td>152</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>48</td>
<td>938</td>
<td>134</td>
<td>934</td>
<td>134</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>48</td>
<td>487</td>
<td>230</td>
<td>485</td>
<td>231</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>48</td>
<td>252</td>
<td>200</td>
<td>253</td>
<td>200</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>48</td>
<td>473</td>
<td>227</td>
<td>473</td>
<td>227</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>48</td>
<td>347</td>
<td>211</td>
<td>347</td>
<td>211</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>48</td>
<td>380</td>
<td>221</td>
<td>380</td>
<td>221</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>48</td>
<td>219</td>
<td>546</td>
<td>219</td>
<td>546</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>48</td>
<td>230</td>
<td>351</td>
<td>229</td>
<td>353</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>48</td>
<td>1045</td>
<td>179</td>
<td>1043</td>
<td>179</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>48</td>
<td>707</td>
<td>108</td>
<td>705</td>
<td>108</td>
</tr>
</tbody>
</table>

Results Table

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

SCALING_GOVERNOR set to Performance

Environment Variables Notes

Environment variables set by runcpu before the start of the run:

```
LD_LIBRARY_PATH = "/home/CPU2017/lib/intel64:/home/CPU2017/je5.0.1-64"
MALLOCONF = "retain:true"
```

General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM memory using Red Hat Enterprise Linux 8.1

Transparent Huge Pages enabled by default

Prior to runcpu invocation

(Continued on next page)
General Notes (Continued)

Filesystem page cache synced and cleared with:
sync; echo 3> /proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS configuration:
ENERGY_PERF_BIAS_CFG mode set to Performance
Hardware Prefetch set to Disable
VT Support set to Disable
C1E Support set to Disable
Sub NUMA Cluster (SNC) set to Enable

Sysinfo program /home/CPU2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16acafc64d
running on localhost.localdomain Mon Aug 2 22:02:48 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz
 2 "physical id"s (chips)
 48 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 12
siblings : 24
 physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11
 physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11

(Continued on next page)
<table>
<thead>
<tr>
<th>Spec CPU®2017 Floating Point Rate Result</th>
<th>SPECrate®2017_fp_base = 234</th>
<th>SPECrate®2017_fp_peak = 238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspec Corporation</td>
<td>Inspur Corporation</td>
<td>Inspur NF5180M6 (Intel Xeon Gold 5317)</td>
</tr>
<tr>
<td>CPU2017 License:</td>
<td>Test Date:</td>
<td>Aug-2021</td>
</tr>
<tr>
<td>Test Sponsor:</td>
<td>Hardware Availability:</td>
<td>May-2021</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Software Availability:</td>
<td>Dec-2020</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

From lscpu from util-linux 2.32.1:

- **Architecture:** x86_64
- **CPU op-mode(s):** 32-bit, 64-bit
- **Byte Order:** Little Endian
- **CPU(s):** 48
- **On-line CPU(s) list:** 0-47
- **Thread(s) per core:** 2
- **Core(s) per socket:** 12
- **Socket(s):** 2
- **NUMA node(s):** 4
- **Vendor ID:** GenuineIntel
- **CPU family:** 6
- **Model:** 106
- **Model name:** Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz
- **Stepping:** 6
- **CPU MHz:** 3400.000
- **CPU max MHz:** 3600.0000
- **CPU min MHz:** 800.0000
- **BogoMIPS:** 6000.00
- **Virtualization:** VT-x
- **L1d cache:** 48K
- **L1i cache:** 32K
- **L2 cache:** 1280K
- **L3 cache:** 18432K
- **NUMA node0 CPU(s):** 0-5,24-29
- **NUMA node1 CPU(s):** 6-11,30-35
- **NUMA node2 CPU(s):** 12-17,36-41
- **NUMA node3 CPU(s):** 18-23,42-47
- **Flags:** fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant-tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3nowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vni fpxr vmx flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erns invpcid rtm cr3 rtvd_a avx512f avx512dq rdseed adx smap avx512ifma cmwclflushopt clwb intel_pt avx512cd sha ni avx512bw avx512vl xsaveopt xsaveopt xsaves cmq_llc cmq_occru_llc cmq_mbm_total cmq_mbm_local wbinvd dtherm ida arat pln pts avx512vmbi umip pklu ospke avx512vmbi gfni vaes vclmulqdq avx512_vnni avx512_bitalg tme avx512 vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities

/proc/cpuinfo cache data
 cache size : 18432 KB

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
Platform Notes (Continued)

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 24 25 26 27 28 29
node 0 size: 257640 MB
node 0 free: 249709 MB
node 1 cpus: 6 7 8 9 10 11 30 31 32 33 34 35
node 1 size: 258044 MB
node 1 free: 252444 MB
node 2 cpus: 12 13 14 15 16 17 36 37 38 39 40 41
node 2 size: 258017 MB
node 2 free: 252515 MB
node 3 cpus: 18 19 20 21 22 23 42 43 44 45 46 47
node 3 size: 258042 MB
node 3 free: 252550 MB

node distances:
node 0 1 2 3
0: 10 11 20 20
1: 11 10 20 20
2: 20 20 10 11
3: 20 20 11 10

From /proc/meminfo
MemTotal: 1056506888 kB
HugePages_Total: 0
Hugepagesize: 2048 kB
/sbin/tuned-adm active
Current active profile: throughput-performance
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

From /etc/*release* /etc/*version*
os-release:
NAME="Red Hat Enterprise Linux"
VERSION="8.2 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.2"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.2 (Ootpa)"
ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 8.2 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.2 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.2:ga

uname -a:
Linux localhost.localdomain 4.18.0-193.el8.x86_64 #1 SMP Fri Mar 27 14:35:58 UTC 2020
SPEC CPU®2017 Floating Point Rate Result

Inspur Corporation

Inspur NF5180M6 (Intel Xeon Gold 5317)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base = 234</th>
<th>SPECrate®2017_fp_peak = 238</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU2017 License: 3358</td>
<td>Test Date: Aug-2021</td>
</tr>
<tr>
<td>Test Sponsor: Inspur Corporation</td>
<td>Hardware Availability: May-2021</td>
</tr>
<tr>
<td>Tested by: Inspur Corporation</td>
<td>Software Availability: Dec-2020</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

- x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2018-12207 (iTLB Multihit):</td>
<td>Not affected</td>
</tr>
<tr>
<td>CVE-2018-3620 (L1 Terminal Fault):</td>
<td>Not affected</td>
</tr>
<tr>
<td>Microarchitectural Data Sampling:</td>
<td>Not affected</td>
</tr>
<tr>
<td>CVE-2017-5754 (Meltdown):</td>
<td>Not affected</td>
</tr>
<tr>
<td>CVE-2018-3639 (Speculative Store Bypass):</td>
<td>Mitigation: Speculative Store Bypass disabled via prctl and seccomp</td>
</tr>
<tr>
<td>CVE-2017-5753 (Spectre variant 1):</td>
<td>Mitigation: usercopy/swapgs barriers and __user pointer sanitization</td>
</tr>
<tr>
<td>CVE-2017-5715 (Spectre variant 2):</td>
<td>Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling</td>
</tr>
<tr>
<td>CVE-2020-0543 (Special Register Buffer Data Sampling):</td>
<td>No status reported</td>
</tr>
<tr>
<td>CVE-2019-11135 (TSX Asynchronous Abort):</td>
<td>Not affected</td>
</tr>
</tbody>
</table>

run-level 3 Aug 2 15:39

SPEC is set to: /home/CPU2017

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Type</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/rhel-home</td>
<td>xfs</td>
<td>3.6T</td>
<td>102G</td>
<td>3.5T</td>
<td>3%</td>
<td>/home</td>
</tr>
</tbody>
</table>

From /sys/devices/virtual/dmi/id

- Vendor: Inspur
- Product: NF5180M6
- Product Family: Family
- Serial: 380827124

Additional information from dmidecode 3.2 follows. **WARNING:** Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:

- 32x Micron 36ASF4G72PZ-3G2R1 32 GB 2 rank 3200, configured at 2933

BIOS:

- BIOS Vendor: American Megatrends Inc.
- BIOS Version: 05.00.00
- BIOS Date: 04/25/2021
- BIOS Revision: 5.22

(End of data from sysinfo program)
Inspur Corporation

Inspur NF5180M6 (Intel Xeon Gold 5317)

SPECratenfp_base = 234
SPECratenfp_peak = 238

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Compiler Version Notes

==
C | 519.lbm_r(base, peak) 538.imagick_r(base, peak)
 | 544.nab_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++ | 508.namd_r(base, peak) 510.parest_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(peak)
==
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(base) 526.blender_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(peak)
==
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000

(Continued on next page)
Inspur Corporation

Inspur NF5180M6 (Intel Xeon Gold 5317)

SPECrate®2017_fp_base = 234

SPECrate®2017_fp_peak = 238

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation
Test Date: Aug-2021
Hardware Availability: May-2021
Software Availability: Dec-2020

Compiler Version Notes (Continued)

Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

C++, C | 511.povray_r(base) 526.blender_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

C++, C, Fortran | 507.cactuBSSN_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak)
| 554.roms_r(base, peak)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran, C | 521.wrf_r(peak)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

(Continued on next page)
Inspur Corporation

Inspur NF5180M6 (Intel Xeon Gold 5317)

SPEC CPU®2017 Floating Point Rate Result

SPECrate®2017_fp_base = 234

SPECrate®2017_fp_peak = 238

CPU2017 License: 3358

Test Sponsor: Inspur Corporation

Tested by: Inspur Corporation

Test Date: Aug-2021

Hardware Availability: May-2021

Software Availability: Dec-2020

Compiler Version Notes (Continued)

```plaintext
Fortran, C | 521.wrf_r(base) 527.cam4_r(base, peak)
```

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
- icx

C++ benchmarks:
- icpx

Fortran benchmarks:
- ifort

(Continued on next page)
Base Compiler Invocation (Continued)

Benchmarks using both Fortran and C:
ifort icx

Benchmarks using both C and C++:
icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Base Portability Flags

503.bwaves_r -DSPEC_LP64
507.cactuBSSN_r -DSPEC_LP64
508.namd_r -DSPEC_LP64
510.parest_r -DSPEC_LP64
511.povray_r -DSPEC_LP64
519.lbm_r -DSPEC_LP64
521.wrf_r -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r -DSPEC_LP64
544.nab_r -DSPEC_LP64
549.fotonik3d_r -DSPEC_LP64
554.roms_r -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div
-qopt-prefetch -ffinite-math-only

(Continued on next page)
Base Optimization Flags (Continued)

Fortran benchmarks (continued):
- qopt-multiple-gather-scatter-by-shuffles -qopt-mem-layout-trans=4
- nostandard-realloc-lhs -align array32byte -auto
- mbranches-within-32B-boundaries -ljemalloc
- L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both Fortran and C:
- w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
- fflto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3 -ipo
- no-prec-div -qopt-prefetch -ffinite-math-only
- qopt-multiple-gather-scatter-by-shuffles
- mbranches-within-32B-boundaries -nostandard-realloc-lhs
- align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both C and C++:
- w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
- fflto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
- mbranches-within-32B-boundaries -ljemalloc
- L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using Fortran, C, and C++:
- w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
- fflto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3
- no-prec-div -qopt-prefetch -ffinite-math-only
- qopt-multiple-gather-scatter-by-shuffles
- mbranches-within-32B-boundaries -nostandard-realloc-lhs
- align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Peak Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
521.wrf_r: ifort icc
Inspur Corporation
Inspur NF5180M6 (Intel Xeon Gold 5317)

SPECrates®2017_fp_base = 234
SPECrates®2017_fp_peak = 238

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: Aug-2021
Hardware Availability: May-2021
Software Availability: Dec-2020

Peak Compiler Invocation (Continued)

527.cam4_r: ifort icx

Benchmarks using both C and C++:
511.povray_r: icpc icc
526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
519.lbm_r: basepeak = yes
538.imagick_r: basepeak = yes
544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -flto -Ofast -qopt-mem-layout-trans=4

C++ benchmarks:
508.namd_r: basepeak = yes
510.parest_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:
503.bwaves_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div -qopt-prefetch -ffinite-math-only

(Continued on next page)
Peak Optimization Flags (Continued)

503.bwaves_r (continued):
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs
-align array32byte -auto -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

549.fotonik3d_r: basepeak = yes

554.roms_r: Same as 503.bwaves_r

Benchmarks using both Fortran and C:

521.wrf_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-nostandard-realloc-lhs -align array32byte -auto
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

507.cactuBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Inspur-Platform-Settings-V2.0.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic2021-official-linux64_revA.xml
http://www.spec.org/cpu2017/flags/Inspur-Platform-Settings-V2.0.xml
SPEC CPU®2017 Floating Point Rate Result

Inspur Corporation

Inspur NF5180M6 (Intel Xeon Gold 5317)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>238</td>
</tr>
</tbody>
</table>

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation
Test Date: Aug-2021
Hardware Availability: May-2021
Software Availability: Dec-2020

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2021-08-02 22:02:48-0400.
Report generated on 2021-09-01 14:19:33 by CPU2017 PDF formatter v6442.
Originally published on 2021-08-31.