SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECSpeed®2017_fp_base = 179
SPECSpeed®2017_fp_peak = 182

Test Date: Jul-2021
Hardware Availability: Jun-2021
Software Availability: Dec-2020

Threads

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>36</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>36</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>36</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>36</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>36</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>36</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>36</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>36</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>36</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>36</td>
</tr>
</tbody>
</table>

SPECSpeed®2017_fp_base (179) ——— SPECSpeed®2017_fp_peak (182)

Hardware

CPU Name: Intel Xeon Gold 6354
Max MHz: 3600
Nominal: 3000
Enabled: 36 cores, 2 chips
Orderable: 1, 2 chip(s)
Cache L1: 32 KB I + 48 KB D on chip per core
L2: 1.25 MB I+D on chip per core
L3: 39 MB I+D on chip per chip
Other: None
Memory: 2 TB (32 x 64 GB 2Rx4 PC4-3200AA-R)
Storage: 1 x 800 GB SAS SSD, RAID 0
Other: None

Software

OS: Red Hat Enterprise Linux 8.3 (Ootpa)
Kernel: 4.18.0-240.el8.x86_64
Compiler: C/C++: Version 2021.1 of Intel oneAPI DPC++/C++
Compiler Build 20201113 for Linux;
Fortran: Version 2021.1 of Intel Fortran Compiler
Classic Build 20201112 for Linux;
C/C++: Version 2021.1 of Intel C/C++ Compiler
Classic Build 20201112 for Linux
Parallel: Yes
Firmware: HPE BIOS Version U46 v1.42 05/26/2021 released
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: jemalloc memory allocator V5.0.1
Power Management: BIOS set to prefer performance at the cost of
additional power usage
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>36</td>
<td>84.5</td>
<td>698</td>
<td>84.3</td>
<td>700</td>
<td>85.4</td>
<td>691</td>
<td>36</td>
<td>84.5</td>
<td>698</td>
<td>84.3</td>
<td>691</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>36</td>
<td>78.6</td>
<td>212</td>
<td>77.9</td>
<td>214</td>
<td>75.1</td>
<td>222</td>
<td>36</td>
<td>78.6</td>
<td>212</td>
<td>77.9</td>
<td>214</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>36</td>
<td>38.5</td>
<td>136</td>
<td>36.5</td>
<td>143</td>
<td>37.3</td>
<td>140</td>
<td>36</td>
<td>38.5</td>
<td>136</td>
<td>36.5</td>
<td>143</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>36</td>
<td>79.3</td>
<td>167</td>
<td>79.3</td>
<td>167</td>
<td>79.2</td>
<td>167</td>
<td>36</td>
<td>75.1</td>
<td>176</td>
<td>75.6</td>
<td>175</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>36</td>
<td>70.8</td>
<td>125</td>
<td>71.1</td>
<td>125</td>
<td>70.7</td>
<td>125</td>
<td>36</td>
<td>70.8</td>
<td>125</td>
<td>71.1</td>
<td>125</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>36</td>
<td>140</td>
<td>84.8</td>
<td>141</td>
<td>84.2</td>
<td>141</td>
<td>84.0</td>
<td>36</td>
<td>140</td>
<td>84.8</td>
<td>141</td>
<td>84.2</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>36</td>
<td>99.0</td>
<td>146</td>
<td>98.8</td>
<td>146</td>
<td>99.3</td>
<td>145</td>
<td>36</td>
<td>99.0</td>
<td>146</td>
<td>98.8</td>
<td>146</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>36</td>
<td>56.5</td>
<td>309</td>
<td>56.4</td>
<td>310</td>
<td>56.7</td>
<td>308</td>
<td>36</td>
<td>51.1</td>
<td>342</td>
<td>51.0</td>
<td>342</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>36</td>
<td>80.8</td>
<td>113</td>
<td>79.5</td>
<td>115</td>
<td>80.5</td>
<td>113</td>
<td>36</td>
<td>80.2</td>
<td>114</td>
<td>79.9</td>
<td>114</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>36</td>
<td>88.9</td>
<td>177</td>
<td>89.9</td>
<td>175</td>
<td>88.9</td>
<td>177</td>
<td>36</td>
<td>88.9</td>
<td>177</td>
<td>89.9</td>
<td>175</td>
</tr>
</tbody>
</table>

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3>/proc/sys/vm/drop_caches

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
KMP_AFFINITY = "granularity=fine,compact"
LD_LIBRARY_PATH = "/home/cpu2017/lib/intel64:/home/cpu2017/je5.0.1-64"
MALLOC_CONF = "retain:true"
OMP_STACKSIZE = "192M"

General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM
memory using Redhat Enterprise Linux 8.0
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.
jemalloc, a general purpose malloc implementation built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

SPECspeed®2017_fp_base = 179
SPECspeed®2017_fp_peak = 182

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

General Notes (Continued)

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon Aug 2 07:58:46 EDT 2021
Submission: cpu2017-20210802-28531.sub

Platform Notes

The system ROM used for this result contains Intel microcode version 0xd0002a0 for the Intel Xeon Gold 6354 processor
BIOS Configuration:
Workload Profile set to General Peak Frequency Compute
Intel Hyper-Threading set to Disabled
Thermal Configuration set to Maximum Cooling
Memory Patrol Scrubbing set to Disabled
Advanced Memory Protection set to Advanced ECC
Last Level Cache (LLC) Prefetch set to Enabled
Last Level Cache (LLC) Dead Line Allocation set to Disabled
Enhanced Processor Performance set to Enabled
Workload Profile set to Custom
Energy/Performance Bias set to Balanced Power
DCU Stream Prefetcher set to Disabled
Adjacent Sector Prefetch set to Disabled
Minimum Processor Idle Power Package C-State set to No Package State
Numa Group Size Optimization set to Flat

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16aca6f64d
running on localhost.localdomain Sat Jul 17 07:38:18 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 6354 CPU @ 3.00GHz
 2 "physical id"s (chips)
 36 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 18
siblings : 18
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

From lscpu from util-linux 2.32.1:

(Continued on next page)
Hewlett Packard Enterprise
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

SPECspeed®2017_fp_base = 179
SPECspeed®2017_fp_peak = 182

Platform Notes (Continued)

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 36
On-line CPU(s) list: 0-35
Thread(s) per core: 1
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Gold 6354 CPU @ 3.00GHz
Stepping: 6
CPU MHz: 1766.434
BogoMIPS: 6000.00
Virtualization: VT-x
L1d cache: 48K
L1i cache: 32K
L2 cache: 1280K
L3 cache: 39936K
NUMA node0 CPU(s): 0-17
NUMA node1 CPU(s): 18-35
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid
aperfmpref pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbog fma cx16
xptr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3nowprefetch cpuid_fault epb cat_13 invpcid_single ssbd
mib ibrs ibitp ibrs_enhanced tpr_shadow vmmi flexpriority ept vpid ept_ad
fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erts invpcid cqm rdt_a avx512f avx512dq
rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw
avx512vl xsavemopt xsaveopt xsave xsave xcetebv1 xsaves cqm_llc cqm_occup_llc cqm_mmb_total
cqm_mmb_local split_lock_detect wbenoinvd dtherm ida arat pln pti avx512vmbmi umip pku
ospke avx512_vbni2 gfnl vaes vpmulqdq avx512_vnni avx512_bitalg tme
avx512_vpopcntdq la57 rdpid md_clear pconfug flush_l1d arch_capabilities

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 2 nodes (0-1)
note 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
node 0 size: 995107 MB
node 0 free: 1028434 MB
node 1 cpus: 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

SPECspeed®2017_fp_base = 179
SPECspeed®2017_fp_peak = 182

Platform Notes (Continued)

node 1 size: 994222 MB
node 1 free: 1027650 MB
node distances:
node 0 1
0: 10 20
1: 20 10

From /proc/meminfo
MemTotal: 2113494912 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

/sbin/tuned-adm active
Current active profile: throughput-performance

From /etc/*release* /etc/*version*
os-release:
NAME="Red Hat Enterprise Linux"
VERSION="8.3 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.3"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.3 (Ootpa)"
ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.3:ga

uname -a:
Linux localhost.localdomain 4.18.0-240.el8.x86_64 #1 SMP Wed Sep 23 05:13:10 EDT 2020
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swaps barriers and __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

SPECspeed®2017_fp_base = 179
SPECspeed®2017_fp_peak = 182

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Jul 17 03:49

SPEC is set to: /home/cpu2017

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS* standard.

Memory:
32x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200

BIOS:
BIOS Vendor: HPE
BIOS Version: U46
BIOS Date: 05/26/2021
BIOS Revision: 1.42
Firmware Revision: 2.50

(End of data from sysinfo program)

Compiler Version Notes

--
C | 619.lbm_s(base, peak) 638.imagick_s(base, peak) 644.nab_s(base)
--
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
--

--
C | 644.nab_s(peak)
--
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,

(Continued on next page)
Compiler Version Notes (Continued)

Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C | 619.lbm_s(base, peak) 638.imagick_s(base, peak)
 | 644.nab_s(base)
==
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C | 644.nab_s(peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C, Fortran | 607.cactuBSSN_s(base, peak)
==
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
Fortran | 603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak)
 | 654.roms_s(base, peak)
==
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
Fortran, C | 621.wrf_s(base, peak) 627.cam4_s(base, peak)
 | 628.pop2_s(base, peak)
==
(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>182</td>
</tr>
</tbody>
</table>

Compiler Version Notes (Continued)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icc

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icc

Benchmarks using Fortran, C, and C++:
icpc icc ifort

Base Portability Flags

603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
627.cam4_s: -DSPEC_LP64 -DSPEC_CASE_FLAG
628.pop2_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
-assume byterecl
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -std=c11 -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

SPECspeed®2017_fp_base = 179
SPECspeed®2017_fp_peak = 182

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Base Optimization Flags (Continued)

C benchmarks (continued):
-ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
-mbranches-within-32B-boundaries

Fortran benchmarks:
-m64 -Wl,-z,muldefs -DSPEC_OPENMP -xCORE-AVX512 -ipo -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -qopenmp -nostandard-realloc-lhs
-mbranches-within-32B-boundaries -L/usr/local/jemalloc64-5.0.1/lib
-ljemalloc

Benchmarks using both Fortran and C:
-m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp
-DSPEC_OPENMP -mbranches-within-32B-boundaries -nostandard-realloc-lhs
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

Benchmarks using Fortran, C, and C++:
-m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp
-DSPEC_OPENMP -mbranches-within-32B-boundaries -nostandard-realloc-lhs
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

Peak Compiler Invocation

C benchmarks (except as noted below):
icc

644.nab_s: icx

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icc

Benchmarks using Fortran, C, and C++:
icpc icc ifort

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

SPECspeed®2017_fp_base = 179
SPECspeed®2017_fp_peak = 182

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Peak Portability Flags
Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

619. lbm_s: basepeak = yes
638. imagick_s: basepeak = yes

644. nab_s: -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -fiopenmp
-DSPEC_OPENMP -qopt-mem-layout-trans=4
-fimf-accuracy-bits=14:sqrt
-mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

Fortran benchmarks:

603. bwaves_s: basepeak = yes
649. fotonik3d_s: -m64 -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2)
-DSPEC_SUPPRESS_OPENMP -DSPEC_OPENMP -ipo -xCORE-AVX512
-O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -qopenmp -nostandard-realloc-lhs
-mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

654. roms_s: basepeak = yes

Benchmarks using both Fortran and C:

621. wrf_s: -m64 -std=c11 -Wl,-z,muldefs -prof-gen(pass 1)
-prof-use(pass 2) -ipo -xCORE-AVX512 -O3 -no-prec-div
-qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4
-DSPEC_SUPPRESS_OPENMP -qopenmp -DSPEC_OPENMP
-mbranches-within-32B-boundaries -nostandard-realloc-lhs
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

627. cam4_s: basepeak = yes
628. pop2_s: basepeak = yes

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(3.00 GHz, Intel Xeon Gold 6354)

SPECspeed®2017_fp_base = 179
SPECspeed®2017_fp_peak = 182

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Peek Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++:

607.cactuBSSN_s: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.xml
http://www.spec.org/cpu2017/flags/Intel-ic2021-official-linux64_revA.xml