SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Jun-2021
Hardware Availability: Jun-2021
Software Availability: Dec-2020

<table>
<thead>
<tr>
<th>Program</th>
<th>Copies</th>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510.parest_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>511.povray_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>526.blender_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** Intel Xeon Gold 5318N
- **Max MHz:** 3400
- **Nominal:** 2100
- **Enabled:** 48 cores, 2 chips, 2 threads/core
- **Orderable:** 1, 2 chip(s)
- **Cache L1:** 32 KB I + 48 KB D on chip per core
- **Cache L2:** 1.25 MB I+D on chip per core
- **Cache L3:** 36 MB I+D on chip per chip
- **Memory:** 2 TB (32 x 64 GB 2Rx4 PC4-3200AA-R, running at 2666)
- **Storage:** 1 x 400 GB SAS SSD, RAID 0
- **Other:** None

Software

- **OS:** Red Hat Enterprise Linux 8.3 (Ootpa)
 Kernel 4.18.0-240.el8.x86_64
- **Compiler:** C/C++: Version 2021.1 of Intel oneAPI DPC++/C++ Compiler Build 20201113 for Linux; Fortran: Version 2021.1 of Intel Fortran Compiler Classic Build 20201112 for Linux;
- **Parallel:** No
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc memory allocator V5.0.1

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

SPEC CPU®2017 Floating Point Rate Result
SPECrate®2017_fp_base = 318
SPECrate®2017_fp_peak = 332

Copyright 2017-2021 Standard Performance Evaluation Corporation

Test Sponsor: HPE
Hardware Availability: Jun-2021
Software Availability: Dec-2020

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>96</td>
<td>1576</td>
<td>611</td>
<td>1575</td>
<td>611</td>
<td>1575</td>
<td>611</td>
<td>48</td>
<td>785</td>
<td>613</td>
<td>785</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>96</td>
<td>271</td>
<td>449</td>
<td>272</td>
<td>448</td>
<td>272</td>
<td>447</td>
<td>96</td>
<td>271</td>
<td>449</td>
<td>272</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>96</td>
<td>377</td>
<td>242</td>
<td>376</td>
<td>242</td>
<td>376</td>
<td>243</td>
<td>96</td>
<td>377</td>
<td>242</td>
<td>376</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>96</td>
<td>1508</td>
<td>166</td>
<td>1507</td>
<td>167</td>
<td>1507</td>
<td>167</td>
<td>48</td>
<td>612</td>
<td>205</td>
<td>605</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>96</td>
<td>621</td>
<td>361</td>
<td>621</td>
<td>361</td>
<td>619</td>
<td>362</td>
<td>96</td>
<td>541</td>
<td>415</td>
<td>539</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>96</td>
<td>449</td>
<td>225</td>
<td>449</td>
<td>225</td>
<td>449</td>
<td>225</td>
<td>96</td>
<td>449</td>
<td>225</td>
<td>449</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>96</td>
<td>751</td>
<td>286</td>
<td>751</td>
<td>285</td>
<td>751</td>
<td>286</td>
<td>96</td>
<td>751</td>
<td>286</td>
<td>751</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>96</td>
<td>437</td>
<td>335</td>
<td>437</td>
<td>335</td>
<td>436</td>
<td>335</td>
<td>96</td>
<td>437</td>
<td>335</td>
<td>437</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>96</td>
<td>492</td>
<td>342</td>
<td>490</td>
<td>342</td>
<td>491</td>
<td>342</td>
<td>96</td>
<td>492</td>
<td>342</td>
<td>490</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>96</td>
<td>286</td>
<td>835</td>
<td>286</td>
<td>834</td>
<td>287</td>
<td>833</td>
<td>96</td>
<td>286</td>
<td>835</td>
<td>286</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>96</td>
<td>291</td>
<td>556</td>
<td>290</td>
<td>557</td>
<td>290</td>
<td>557</td>
<td>96</td>
<td>287</td>
<td>562</td>
<td>286</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>96</td>
<td>1944</td>
<td>192</td>
<td>1944</td>
<td>192</td>
<td>1945</td>
<td>192</td>
<td>96</td>
<td>1944</td>
<td>192</td>
<td>1945</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>96</td>
<td>1182</td>
<td>129</td>
<td>1180</td>
<td>129</td>
<td>1177</td>
<td>130</td>
<td>48</td>
<td>493</td>
<td>155</td>
<td>492</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
 sync; echo 3 > /proc/sys/vm/drop_caches

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH =
"/home/cpu2017_1.1.8/lib/intel64:/home/cpu2017_1.1.8/je5.0.1-64"
MALLOC_CONF = "retain:true"
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>332</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM
memory using Red Hat Enterprise Linux 8.1
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.
jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon Jul 5 07:59:51 EDT 2021
Submission: cpu2017-20210705-27732.sub

Platform Notes

The system ROM used for this result contains Intel microcode version 0xd0002a0 for
the Intel Xeon Gold 5318N processor.
BIOS Configuration:
- Workload Profile set to General Throughput Compute
- Memory Patrol Scrubbing set to Disabled
- Advanced Memory Protection set to Advanced ECC
- Last Level Cache (LLC) Prefetch set to Enabled
- Last Level Cache (LLC) Dead Line Allocation set to Disabled
- Enhanced Processor Performance set to Enabled
- Enhanced Processor Performance Profile set to Aggressive
- Thermal Configuration set to Maximum Cooling
- Workload Profile set to Custom
 - DCU Stream Prefetcher set to Disabled
 - XPT Remote Prefetcher set to Enabled
 - Energy/Performance Bias set to Balanced Performance

Sysinfo program /home/cpu2017_1.1.8/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891e0e16aca64d
running on localhost.localdomain Wed Jun 23 00:36:51 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
- model name : Intel(R) Xeon(R) Gold 5318N CPU @ 2.10GHz

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

SPECrate®2017_fp_base = 318
SPECrate®2017_fp_peak = 332

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jun-2021
Hardware Availability: Jun-2021
Software Availability: Dec-2020

Platform Notes (Continued)

2 "physical id"s (chips)
96 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 24
siblings : 48
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

From lscpu from util-linux 2.32.1:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Gold 5318N CPU @ 2.10GHz
Stepping: 6
CPU MHz: 1153.564
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 48K
L1i cache: 32K
L2 cache: 1280K
L3 cache: 36864K
NUMA node0 CPU(s): 0-11,48-59
NUMA node1 CPU(s): 12-23,60-71
NUMA node2 CPU(s): 24-35,72-83
NUMA node3 CPU(s): 36-47,84-95
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid
aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd
mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vmmi flexpriority ept vpid ept_ad
fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid cqm xsave
avx512f rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni
avx512bw avx512vl xsaveopt xsaves xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc
ckm_mbb_total ckm_mbb_local split_lock_detect wbnoinvd dtherm ida arat pin pts
avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni
avx512_bitalg tme

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)
SPEC CPU®2017 Floating Point Rate Result
Copyright 2017-2021 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

| SPECrate®2017_fp_base = 318 |
| SPECrate®2017_fp_peak = 332 |

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jun-2021
Hardware Availability: Jun-2021
Software Availability: Dec-2020

Platform Notes (Continued)

system-release-cpe: cpe:/o:redhat:enterprise_linux:8.3:ga

uname -a:
Linux localhost.localdomain 4.18.0-240.el8.x86_64 #1 SMP Wed Sep 23 05:13:10 EDT 2020
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit):
Not affected
CVE-2018-3620 (L1 Terminal Fault):
Not affected
Microarchitectural Data Sampling:
Not affected
CVE-2017-5754 (Meltdown):
Not affected
CVE-2018-3639 (Speculative Store Bypass):
Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1):
Mitigation: usercopy/swapgs barriers and __user pointer sanitization
CVE-2017-5715 (Spectre variant 2):
Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling):
Not affected
CVE-2019-11135 (TSX Asynchronous Abort):
Not affected

run-level 3 Jun 23 00:35

SPEC is set to: /home/cpu2017_1.1.8
Filesystem Type Size Used Avail Use% Mounted on
/dev/mapper/rhel00-home xfs 372G 220G 153G 59% /home

From /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant DL360 Gen10 Plus
Product Family: ProLiant
Serial: CN701108CQ

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
32x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200, configured at 2666

BIOS:
BIOS Vendor: HPE
BIOS Version: U46
BIOS Date: 05/16/2021
BIOS Revision: 1.42

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

SPECrate®2017_fp_base = 318
SPECrate®2017_fp_peak = 332

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Jun-2021
Hardware Availability: Jun-2021
Software Availability: Dec-2020

Platform Notes (Continued)

Firmware Revision: 2.42
(End of data from sysinfo program)

Compiler Version Notes

==
| C | 519.lbm_r(base, peak) 538.imagick_r(base, peak) 544.nab_r(base, peak) |
==

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
| C++ | 508.namd_r(base, peak) 510.parest_r(base, peak) |
==

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
| C++, C | 511.povray_r(peak) |
==

Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
| C++, C | 511.povray_r(base) 526.blender_r(base, peak) |
==

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

SPECrate®2017_fp_base = 318
SPECrate®2017_fp_peak = 332

Compiler Version Notes (Continued)

C++, C | 511.povray_r(peak)

Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

C++, C | 511.povray_r(base) 526.blender_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

C++, C, Fortran | 507.cactuBSSN_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak)
554.roms_r(base, peak)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran, C | 521.wrf_r(base, peak) 527.cam4_r(base, peak)

(Continued on next page)
SPECrater®2017_fp_base = 318
SPECrater®2017_fp_peak = 332

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Compiler Version Notes (Continued)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icx

Benchmarks using both C and C++:
icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.ibm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

CPU2017 License:	3
Test Sponsor:	HPE
Tested by:	HPE

Base Optimization Flags

C benchmarks:
- `-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
- `-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4`
- `-mbranches-within-32B-boundaries -ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

C++ benchmarks:
- `-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto`
- `-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4`
- `-mbranches-within-32B-boundaries -ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Fortran benchmarks:
- `-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div`
- `-qopt-prefetch -ffinite-math-only`
- `-qopt-multiple-gather-scatter-by-shuffles -qopt-mem-layout-trans=4`
- `-nostandard-realloc-lhs -align array32byte -auto`
- `-mbranches-within-32B-boundaries -ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both Fortran and C:
- `-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
- `-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3 -ipo`
- `-no-prec-div -qopt-prefetch -ffinite-math-only`
- `-qopt-multiple-gather-scatter-by-shuffles`
- `-mbranches-within-32B-boundaries -nostandard-realloc-lhs`
- `-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both C and C++:
- `-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
- `-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4`
- `-mbranches-within-32B-boundaries -ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using Fortran, C, and C++:
- `-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
- `-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3`
- `-no-prec-div -qopt-prefetch -ffinite-math-only`
- `-qopt-multiple-gather-scatter-by-shuffles`
- `-mbranches-within-32B-boundaries -nostandard-realloc-lhs`
- `-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`
Peak Compiler Invocation

C benchmarks:
- icx

C++ benchmarks:
- icpx

Fortran benchmarks:
- ifort

Benchmarks using both Fortran and C:
- ifort icx

Benchmarks using both C and C++:
- 511.povray_r: icpc icc
- 526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
- icpx icx ifort

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
- 519.lbm_r: basepeak = yes
- 538.imagick_r: basepeak = yes
- 544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -flto
 -Ofast -qopt-mem-layout-trans=4
 -fimf-accuracy-bits=14:sqrt
 -mbranches-within-32B-boundaries -ljemalloc
 -L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:

(Continued on next page)
Peak Optimization Flags (Continued)

508.namd_r: basepeak = yes

510.parest_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:

503.bwaves_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs
-align array32byte -auto -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

549.fotonik3d_r: basepeak = yes

554.roms_r: Same as 503.bwaves_r

Benchmarks using both Fortran and C:

521.wrf_r: basepeak = yes

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

507.cactuBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.html
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.10 GHz, Intel Xeon Gold 5318N)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base = 318</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate®2017_fp_peak = 332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License: 3</th>
<th>Test Date: Jun-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability: Jun-2021</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability: Dec-2020</td>
</tr>
</tbody>
</table>

You can also download the XML flags sources by saving the following links:

- http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2021-06-22 15:06:50-0400.
Originally published on 2021-07-20.