Hewlett Packard Enterprise
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Gold 6312U)

SPECrater®2017_fp_base = 185
SPECrater®2017_fp_peak = 193

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Hardware
CPU Name: Intel Xeon Gold 6312U
Max MHz: 3600
Nominal: 2400
Enabled: 24 cores, 1 chip, 2 threads/core
Orderable: 1 chip
Cache L1: 32 KB I + 48 KB D on chip per core
L2: 1.25 MB I+D on chip per core
L3: 36 MB I+D on chip per chip
Other: None
Memory: 512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R)
Storage: 1 x 480 GB NVMe SSD, RAID 0
Other: None

Software
OS: Red Hat Enterprise Linux 8.3 (Ootpa)
Kernel 4.18.0-240.el8.x86_64
Compiler: C/C++: Version 2021.1 of Intel oneAPI DPC++/C++
Compiler Build 20201113 for Linux;
Fortran: Version 2021.1 of Intel Fortran Compiler
Classic Build 20201112 for Linux;
C/C++: Version 2021.1 of Intel C/C++ Compiler
Classic Build 20201112 for Linux
Parallel: No
Firmware: HPE BIOS Version U56 v1.50 05/13/2021 released May-2021
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: jemalloc memory allocator V5.0.1

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Copyright 2017-2021 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Gold 6312U)

SPECrate®2017_fp_base = 185
SPECrate®2017_fp_peak = 193

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Software (Continued)
Power Management: BIOS set to prefer performance at the cost of additional power usage

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>48</td>
<td>1326</td>
<td>363</td>
<td>1325</td>
<td>363</td>
<td>1325</td>
<td>363</td>
<td>48</td>
<td>1326</td>
<td>363</td>
<td>1325</td>
<td>363</td>
<td>1325</td>
<td>363</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>48</td>
<td>235</td>
<td>258</td>
<td>234</td>
<td>259</td>
<td>233</td>
<td>261</td>
<td>48</td>
<td>235</td>
<td>258</td>
<td>234</td>
<td>259</td>
<td>233</td>
<td>261</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>48</td>
<td>327</td>
<td>139</td>
<td>327</td>
<td>139</td>
<td>327</td>
<td>139</td>
<td>48</td>
<td>327</td>
<td>139</td>
<td>327</td>
<td>139</td>
<td>327</td>
<td>139</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>48</td>
<td>1251</td>
<td>100</td>
<td>1254</td>
<td>100</td>
<td>1255</td>
<td>100</td>
<td>24</td>
<td>530</td>
<td>119</td>
<td>532</td>
<td>118</td>
<td>529</td>
<td>119</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>48</td>
<td>533</td>
<td>210</td>
<td>534</td>
<td>210</td>
<td>533</td>
<td>210</td>
<td>48</td>
<td>463</td>
<td>242</td>
<td>465</td>
<td>241</td>
<td>464</td>
<td>242</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>48</td>
<td>364</td>
<td>139</td>
<td>365</td>
<td>138</td>
<td>366</td>
<td>138</td>
<td>48</td>
<td>364</td>
<td>139</td>
<td>365</td>
<td>138</td>
<td>366</td>
<td>138</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>48</td>
<td>644</td>
<td>167</td>
<td>643</td>
<td>167</td>
<td>644</td>
<td>167</td>
<td>48</td>
<td>644</td>
<td>167</td>
<td>643</td>
<td>167</td>
<td>644</td>
<td>167</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>48</td>
<td>384</td>
<td>191</td>
<td>384</td>
<td>190</td>
<td>384</td>
<td>190</td>
<td>48</td>
<td>384</td>
<td>191</td>
<td>384</td>
<td>190</td>
<td>384</td>
<td>190</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>48</td>
<td>433</td>
<td>194</td>
<td>434</td>
<td>193</td>
<td>429</td>
<td>196</td>
<td>48</td>
<td>433</td>
<td>194</td>
<td>434</td>
<td>193</td>
<td>429</td>
<td>196</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>48</td>
<td>247</td>
<td>484</td>
<td>247</td>
<td>484</td>
<td>247</td>
<td>483</td>
<td>48</td>
<td>247</td>
<td>484</td>
<td>247</td>
<td>484</td>
<td>247</td>
<td>483</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>48</td>
<td>252</td>
<td>321</td>
<td>252</td>
<td>320</td>
<td>251</td>
<td>322</td>
<td>48</td>
<td>247</td>
<td>327</td>
<td>250</td>
<td>323</td>
<td>248</td>
<td>326</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>48</td>
<td>1700</td>
<td>110</td>
<td>1702</td>
<td>110</td>
<td>1701</td>
<td>110</td>
<td>48</td>
<td>1700</td>
<td>110</td>
<td>1702</td>
<td>110</td>
<td>1701</td>
<td>110</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>48</td>
<td>1037</td>
<td>73.6</td>
<td>1035</td>
<td>73.7</td>
<td>1035</td>
<td>73.7</td>
<td>24</td>
<td>413</td>
<td>92.4</td>
<td>413</td>
<td>92.3</td>
<td>415</td>
<td>91.9</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes
The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes
Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3 > /proc/sys/vm/drop_caches

Environment Variables Notes
Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/cpu2017/lib/intel64:/cpu2017/je5.0.1-64"
MALLOC_CONF = "retain:true"
General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM
memory using Red Hat Enterprise Linux 8.1
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.
jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon Jul 5 08:00:46 EDT 2021
Submission: cpu2017-20210705-27731.sub

Platform Notes

The system ROM used for this result contains Intel microcode version 0xd0002a0 for
the Intel Xeon Gold 6312U processor.
BIOS Configuration:
Workload Profile set to General Throughput Compute
Memory Patrol Scrubbing set to Disabled
Advanced Memory Protection set to Advanced ECC
Last Level Cache (LLC) Prefetch set to Enabled
Last Level Cache (LLC) Dead Line Allocation set to Disabled
Enhanced Processor Performance set to Enabled
Enhanced Processor Performance Profile set to Aggressive
Thermal Configuration set to Maximum Cooling
Workload Profile set to Custom
DCU Stream Prefetcher set to Disabled
XPT Remote Prefetcher set to Enabled
Energy/Performance Bias set to Balanced Performance

Sysinfo program /cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16acafc64d
running on localhost.localdomain Mon Jun 21 00:33:30 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 6312U CPU @ 2.40GHz

(Continued on next page)
Platform Notes (Continued)

1. "physical id"s (chips)
2. 48 "processors"
 - cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 - cpu cores : 24
 - siblings : 48
 - physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

From lscpu from util-linux 2.32.1:
- Architecture: x86_64
- CPU op-mode(s): 32-bit, 64-bit
- Byte Order: Little Endian
- CPU(s): 48
- On-line CPU(s) list: 0-47
- Thread(s) per core: 2
- Core(s) per socket: 24
- Socket(s): 1
- NUMA node(s): 2
- Vendor ID: GenuineIntel
- CPU family: 6
- Model: 106
- Model name: Intel(R) Xeon(R) Gold 6312U CPU @ 2.40GHz
- Stepping: 6
- CPU MHz: 2202.769
- BogoMIPS: 4800.00
- Virtualization: VT-x
- L1d cache: 48K
- L1i cache: 32K
- L2 cache: 1280K
- L3 cache: 36864K
- NUMA node0 CPU(s): 0-11, 24-35
- NUMA node1 CPU(s): 12-23, 36-47
- Flags: fpu vme de pse ts cmov apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abrm 3nowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnumi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsaves xsavec xgetbv1 xsaveas cqm_llc cqm_occup_llc cqm_mbb_total cqm_mbb_local split_lock_detect wbinvd dtherm ida arat pti pns md_clear pdpte捭 cacheflush pcache_asid pvflush mcm_cx16 movbe avx512_vbmi2 gfni vaes svm cpuid llc arch_capabilities

/proc/cpuinfo cache data

(Continued on next page)
Platform Notes (Continued)

```console

```
```

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35
node 0 size: 250213 MB
node 0 free: 256915 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 42 43 44 45 46 47
node 1 size: 250952 MB
node 1 free: 256807 MB
node distances:
node   0   1
0:  10  20
1:  20  10
```

From /proc/meminfo
```
MemTotal:       528048188 kB
HugePages_Total:       0
Hugepagesize:       2048 kB
```
```
/sbin/tuned-adm active
    Current active profile: throughput-performance
```

From /etc/*release* /etc/*version*
```
os-release:
    NAME="Red Hat Enterprise Linux"
    VERSION="8.3 (Ootpa)"
    ID="rhel"
    ID_LIKE="fedora"
    VERSION_ID="8.3"
    PLATFORM_ID="platform:el8"
    PRETTY_NAME="Red Hat Enterprise Linux 8.3 (Ootpa)"
    ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.3:ga
```
```
uname -a:
    Linux localhost.localdomain 4.18.0-240.el8.x86_64 #1 SMP Wed Sep 23 05:13:10 EDT 2020
    x86_64 x86_64 x86_64 GNU/Linux
```

Kernel self-reported vulnerability status:

- CVE-2018-12207 (iTLB Multihit): Not affected
- CVE-2018-3620 (L1 Terminal Fault): Not affected
- Microarchitectural Data Sampling: Not affected

(Continued on next page)
Platform Notes (Continued)

CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass):
 Mitigation: Speculative Store Bypass disabled via prctl and seccomp

CVE-2017-5753 (Spectre variant 1):
 Mitigation: usercopy/swapsgs barriers and __user pointer sanitization

CVE-2017-5715 (Spectre variant 2):
 Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling

CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Jun 21 00:29

SPEC is set to: /cpu2017

Filesystem Type Size Used Avail Use% Mounted on
/dev/nvme1n1p4 xfs 442G 136G 306G 31% /

From /sys/devices/virtual/dmi/id
 Vendor: HPE
 Product: ProLiant DL110 Gen10 Plus
 Product Family: ProLiant
 Serial: T912PP0032

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
 Memory:
 8x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200

BIOS:
 BIOS Vendor: HPE
 BIOS Version: U56
 BIOS Date: 05/13/2021
 BIOS Revision: 1.50
 Firmware Revision: 2.40

(End of data from sysinfo program)

Compiler Version Notes

==
C | 519.lbm_r(base, peak) 538.imagick_r(base, peak)
 | 544.nab_r(base, peak)
==

(Continued on next page)
Compiler Version Notes (Continued)

Intel (R) oneAPI DPC++/C++ Compiler for applications running on Intel (R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>C++</th>
<th>508.namd_r(base, peak) 510.parest_r(base, peak)</th>
</tr>
</thead>
</table>

Intel (R) oneAPI DPC++/C++ Compiler for applications running on Intel (R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>C++, C</th>
<th>511.povray_r(peak)</th>
</tr>
</thead>
</table>

Intel (R) C++ Intel (R) 64 Compiler Classic for applications running on
Intel (R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>C++, C</th>
<th>511.povray_r(base) 526.blender_r(base, peak)</th>
</tr>
</thead>
</table>

Intel (R) oneAPI DPC++/C++ Compiler for applications running on Intel (R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>C++, C</th>
<th>511.povray_r(peak)</th>
</tr>
</thead>
</table>

Intel (R) C++ Intel (R) 64 Compiler Classic for applications running on
Intel (R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>C++, C</th>
<th>511.povray_r(base) 526.blender_r(base, peak)</th>
</tr>
</thead>
</table>

Intel (R) oneAPI DPC++/C++ Compiler for applications running on Intel (R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>C++, C</th>
<th>511.povray_r(peak)</th>
</tr>
</thead>
</table>

Intel (R) C++ Intel (R) 64 Compiler Classic for applications running on
Intel (R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

(Continued on next page)
Compiler Version Notes (Continued)

C++, C | 511.povray_r(base) 526.blender_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

C++, C, Fortran | 507.cactuBSSN_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak)
 | 554.roms_r(base, peak)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran, C | 521.wrf_r(base, peak) 527.cam4_r(base, peak)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Gold 6312U)

SPECrate®2017_fp_base = 185
SPECrate®2017_fp_peak = 193

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icx

Benchmarks using both C and C++:
icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Gold 6312U)

SPECratenpa2017_fp_base = 185
SPECratenpa2017_fp_peak = 193

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Base Optimization Flags (Continued)

C++ benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div
-qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles -qopt-mem-layout-trans=4
-nostandard-realloc-lhs -align array32byte -auto
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both Fortran and C:
-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3 -ipo
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-mbranches-within-32B-boundaries -nostandard-realloc-lhs
-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both C and C++:
-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using Fortran, C, and C++:
-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-mbranches-within-32B-boundaries -nostandard-realloc-lhs
-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Peak Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Gold 6312U)

SPECrater®2017_fp_base = 185
SPECrater®2017_fp_peak = 193

<table>
<thead>
<tr>
<th>CPU2017 License: 3</th>
<th>Test Date: Jun-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability: Jun-2021</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability: Dec-2020</td>
</tr>
</tbody>
</table>

Peak Compiler Invocation (Continued)

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icx

Benchmarks using both C and C++:
511.povray_r: icpc icc
526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
519.lbm_r: basepeak = yes
538.imagick_r: basepeak = yes
544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -flto
-Ofast -qopt-mem-layout-trans=4
-fimf-accuracy-bits=14:sqrt
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
508.namd_r: basepeak = yes
510.parest_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

(Continued on next page)
Peak Optimization Flags (Continued)

Fortran benchmarks:

503.bwaves_r: basepeak = yes

549.fotonik3d_r: basepeak = yes

554.roms_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs
-align array32byte -auto -mbranches-within-32B-boundaries
-1jemalloc -L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both Fortran and C:

521.wrf_r: basepeak = yes

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -1jemalloc

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

507.cactuBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.html

You can also download the XML flags sources by saving the following links:

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.xml
http://www.spec.org/cpu2017/flags/Intel-ic2021-official-linux64_revA.xml
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Gold 6312U)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base = 185</th>
<th>SPECrater®2017_fp_peak = 193</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License: 3</th>
<th>Test Date:</th>
<th>Jun-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability:</td>
<td>Jun-2021</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability:</td>
<td>Dec-2020</td>
</tr>
</tbody>
</table>

SPEC CPU and SPECrater are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2021-06-21 01:33:29-0400.
Originally published on 2021-07-20.