Hewlett Packard Enterprise
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: May-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

<table>
<thead>
<tr>
<th>Threads</th>
<th>SPECspeed®2017_fp_base = 176</th>
<th>SPECspeed®2017_fp_peak = 188</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>603.bwaves_s 64</td>
<td>248</td>
</tr>
<tr>
<td>32</td>
<td>607.cactuBSSN_s 64</td>
<td>252</td>
</tr>
<tr>
<td>32</td>
<td>619.lbm_s 64</td>
<td>102</td>
</tr>
<tr>
<td>32</td>
<td>621.wrf_s 64</td>
<td>117</td>
</tr>
<tr>
<td>32</td>
<td>627.cam4_s 64</td>
<td>114</td>
</tr>
<tr>
<td>32</td>
<td>628.pop2_s 64</td>
<td>175</td>
</tr>
<tr>
<td>32</td>
<td>638.imagick_s 64</td>
<td>191</td>
</tr>
<tr>
<td>32</td>
<td>644.nab_s 64</td>
<td>274</td>
</tr>
<tr>
<td>32</td>
<td>649.fotonik3d_s 64</td>
<td>113</td>
</tr>
<tr>
<td>32</td>
<td>654 roms_s 64</td>
<td>217</td>
</tr>
</tbody>
</table>

Hardware

CPU Name: AMD EPYC 7343
Max MHz: 3900
Nominal: 3200
Enabled: 32 cores, 2 chips, 2 threads/core
Orderable: 1, 2 chip(s)
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 512 KB I+D on chip per core
L3: 128 MB I+D on chip per chip, 32 MB shared / 4 cores
Other: None
Memory: 2 TB (16 x 128 GB 4Rx4 PC4-3200AA-L)
Storage: 1 x 182 GB SATA SSD, RAID 0
Other: None

Software

OS: Ubuntu 20.04.1 LTS (x86_64)
Kernel 5.4.0-42-generic
Compiler: C/C++/Fortran: Version 3.0.0 of AOCC
Parallel: Yes
Firmware: HPE BIOS Version A42 v2.42 04/29/2021 released Apr-2021
File System: ext4
System State: Run level 5 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: jemalloc: jemalloc memory allocator library v5.1.0
Power Management: BIOS set to prefer performance at the cost of additional power usage
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Base</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Peaks</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>32</td>
<td>89.3</td>
<td>660</td>
<td>89.6</td>
<td>658</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>32</td>
<td>67.4</td>
<td>247</td>
<td>66.4</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>619.ibm_s</td>
<td>32</td>
<td>51.0</td>
<td>103</td>
<td>51.2</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>32</td>
<td>75.8</td>
<td>175</td>
<td>76.0</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>32</td>
<td>78.1</td>
<td>113</td>
<td>77.6</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>32</td>
<td>177</td>
<td>179</td>
<td>177</td>
<td>179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>32</td>
<td>75.5</td>
<td>191</td>
<td>75.8</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>644.nab_s</td>
<td>32</td>
<td>63.7</td>
<td>274</td>
<td>63.7</td>
<td>274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>32</td>
<td>80.6</td>
<td>113</td>
<td>80.8</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>654.roms_s</td>
<td>32</td>
<td>72.7</td>
<td>217</td>
<td>73.7</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compiler Notes

Submit Notes

The config file option 'submit' was used.

'numactl' was used to bind copies to the cores.

See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size

'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numacl i.e.:

```
numactl --interleave=all runcpu <etc>
```

'echo 8 > /proc/sys/vm/dirty_ratio' run as root to limit dirty cache to 8% of memory.

'echo 1 > /proc/sys/vm/swappiness' run as root to limit swap usage to minimum necessary.

'echo 1 > /proc/sys/vm/zone_reclaim_mode' run as root to free node-local memory and avoid remote memory usage.

'sync; echo 3 > /proc/sys/vm/drop_caches' run as root to reset filesystem caches.

'sysctl -w kernel.randomize_va_space=0' run as root to disable address space layout randomization (ASLR) to reduce run-to-run variability.

(Continued on next page)
Operating System Notes (Continued)

To enable Transparent Hugepages (THP) for all allocations,
'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To enable THP only on request for peak runs of 628.pop2_s, and 638.imagick_s,
'echo madvise > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To disable THP for peak runs of 627.cam4_s, 644.nab_s, 649.fotonik3d_s, and 654.roms_s,
'echo never > /sys/kernel/mm/transparent_hugepage/defrag' run as root.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-63"
LD_LIBRARY_PATH = "/home/SPEC_CPU2017/amd_speed_aocc300_milan_B_lib/64;/home/SPEC_CPU2017/amd_speed_aocc300_milan_B_lib/32:"
MALLOCF_CONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "64"

Environment variables set by runcpu during the 603.bwaves_s peak run:
GOMP_CPU_AFFINITY = "0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42
11 43 12 44 13 45 14 46 15 47 16 48 17 49 18 50 19 51 20 52 21 53 22 54
23 55 24 56 25 57 26 58 27 59 28 60 29 61 30 62 31 63"

Environment variables set by runcpu during the 607.cactuBSSN_s peak run:
GOMP_CPU_AFFINITY = "0-31"

Environment variables set by runcpu during the 619.lbm_s peak run:
GOMP_CPU_AFFINITY = "0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42
11 43 12 44 13 45 14 46 15 47 16 48 17 49 18 50 19 51 20 52 21 53 22 54
23 55 24 56 25 57 26 58 27 59 28 60 29 61 30 62 31 63"

Environment variables set by runcpu during the 627.cam4_s peak run:
GOMP_CPU_AFFINITY = "0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42
11 43 12 44 13 45 14 46 15 47 16 48 17 49 18 50 19 51 20 52 21 53 22 54
23 55 24 56 25 57 26 58 27 59 28 60 29 61 30 62 31 63"

Environment variables set by runcpu during the 644.nab_s peak run:
GOMP_CPU_AFFINITY = "0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42
11 43 12 44 13 45 14 46 15 47 16 48 17 49 18 50 19 51 20 52 21 53 22 54
23 55 24 56 25 57 26 58 27 59 28 60 29 61 30 62 31 63"
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

SPEC CPU® 2017 Floating Point Speed Result
Copyright 2017-2021 Standard Performance Evaluation Corporation

SPECspeed®2017_fp_base = 176
SPECspeed®2017_fp_peak = 188

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: May-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Environment Variables Notes (Continued)

Environment variables set by runcpu during the 654.roms_s peak run:
GOMP_CPU_AFFINITY = "0-31"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7742 CPU + 1TiB Memory using openSUSE 15.2

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v4.8.2 in RHEL 7.4
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2

Submitted by: "Bucek, James" <james.bucek@hpe.com>
Submitted: Wed May 12 19:01:22 EDT 2021
Submission: cpu2017-20210512-26341.sub

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Tue Jun 1 09:02:27 EDT 2021
Submission: cpu2017-20210512-26341.sub

Platform Notes

BIOS Configuration
Workload Profile set to General Peak Frequency Compute
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
Last-Level Cache (LLC) as NUMA Node set to Enabled
NUMA memory domains per socket set to One memory domain per socket
Thermal Configuration set to Maximum Cooling
Infinity Fabric Power Management set to Disabled
Infinity Fabric Performance State set to P0
Workload Profile set to Custom
Power Regulator set to OS Control Mode

Sysinfo program /home/SPEC_CPU2017/bin/sysinfo
Rev: r6538 of 2020-09-24 e8664e66d2d7080afeaa89d4b38e2f1c
running on dl385g10v2 Wed Apr 1 12:25:55 2020

SUT (System Under Test) info as seen by some common utilities.

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>SPECspeed®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td>188</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : AMD EPYC 7343 16-Core Processor
 2 "physical id"s (chips)
 64 "processors"
 cores, siblings (Caution: counting these is hw and system dependent. The following
 excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 cpu cores : 16
 siblings : 32
 physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 8
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7343 16-Core Processor
Stepping: 1
Frequency boost: enabled
CPU MHz: 1536.438
CPU max MHz: 3200.0000
CPU min MHz: 1500.0000
BogoMIPS: 6388.21
Virtualization: AMD-V
L1d cache: 1 MiB
L1i cache: 1 MiB
L2 cache: 16 MiB
L3 cache: 256 MiB
NUMA node0 CPU(s): 0-3,32-35
NUMA node1 CPU(s): 4-7,36-39
NUMA node2 CPU(s): 8-11,40-43
NUMA node3 CPU(s): 12-15,44-47
NUMA node4 CPU(s): 16-19,48-51
NUMA node5 CPU(s): 20-23,52-55
NUMA node6 CPU(s): 24-27,56-59

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECspeed®2017_fp_base = 176
SPECspeed®2017_fp_peak = 188

Platform Notes (Continued)

NUMA node7 CPU(s): 28-31, 60-63
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, IBRS_PW, STIBP always-on, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmx ext sys fxsr opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperf perf perf (!(n) pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bperf perfctr_llc mwaitx cpb cat_l3 cdpl_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsq.sk mb1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha ni xsaveopt xsavec xsaves cqm llc cqm ocup llc cqm_mbb total cqm_mbb_local clzero irperf xsaveprtr wbnoinvd arat npt lbv svm_lock nrip_save tsc_scale vmcb_clean flushbyaid decodeassists pausefilter pfthreshold v_vmsave_vmloadvgif umip pkup ospe vaes vpclmulqdq rdpid overflow_recover succor smca

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

SPECspeed®2017_fp_base = 176
SPECspeed®2017_fp_peak = 188

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: May-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Platform Notes (Continued)

node 5 cpus: 20 21 22 23 52 53 54 55
node 5 size: 258046 MB
node 5 free: 257893 MB
node 6 cpus: 24 25 26 27 56 57 58 59
node 6 size: 258046 MB
node 6 free: 257691 MB
node 7 cpus: 28 29 30 31 60 61 62 63
node 7 size: 258043 MB
node 7 free: 257866 MB
node distances:
node 0 1 2 3 4 5 6 7
0: 10 11 11 11 32 32 32 32
1: 11 10 11 11 32 32 32 32
2: 11 11 10 11 32 32 32 32
3: 11 11 11 10 32 32 32 32
4: 32 32 32 32 10 11 11 11
5: 32 32 32 32 11 10 11 11
6: 32 32 32 32 11 10 11 11
7: 32 32 32 32 11 11 11 10

From /proc/meminfo
MemTotal: 2101231580 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

/sbin/tuned-adm active
 Current active profile: throughput-performance
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance
/usr/bin/lsb_release -d
 Ubuntu 20.04.1 LTS

From /etc/*release* /etc/*version*
debian_version: bullseye/sid
os-release:
 NAME="Ubuntu"
 VERSION="20.04.1 LTS (Focal Fossa)"
 ID=ubuntu
 ID_LIKE=debian
 PRETTY_NAME="Ubuntu 20.04.1 LTS"
 VERSION_ID="20.04"
 HOME_URL="https://www.ubuntu.com/"
 SUPPORT_URL="https://help.ubuntu.com/"

uname -a:

(Continued on next page)
Platform Notes (Continued)

Linux dl385g10v2 5.4.0-42-generic #46-Ubuntu SMP Fri Jul 10 00:24:02 UTC 2020 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2018-3639 (Speculative Store Bypass): Mitigation: usercopy/swapsgs barriers and __user pointer sanitization
CVE-2017-5753 (Spectre variant 1): Mitigation: Full AMD retpoline, IBPB: conditional, IBRS_FW, STIBP: always-on, RSB filling
CVE-2017-5715 (Spectre variant 2): Not affected
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 5 Apr 1 12:23

SPEC is set to: /home/SPEC_CPU2017

Filesystem Type Size Used Avail Use% Mounted on
/dev/mapper/ubuntu--vg-ubuntu--lv ext4 182G 80G 94G 46% /

From /sys/devices/virtual/dmi/id

Vendor: HPE
Product: ProLiant DL385 Gen10 Plus
Product Family: ProLiant
Serial: CN79340HC3

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
16x Samsung M386AAG40AM3-CWE 128 GB 4 rank 3200
16x UNKNOWN NOT AVAILABLE

BIOS:
BIOS Vendor: HPE
BIOS Version: A42
BIOS Date: 04/29/2021
BIOS Revision: 2.42
Firmware Revision: 2.40
SPEC CPU®2017 Floating Point Speed Result

Copyright 2017-2021 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

SPECspeed®2017_fp_base = 176
SPECspeed®2017_fp_peak = 188

Platform Notes (Continued)

(End of data from sysinfo program)

Compiler Version Notes

==
C | 619.lbm_s(base, peak) 638.imagick_s(base, peak)
644.nab_s(base, peak)
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

==
C++, C, Fortran | 607.cactuBSSN_s(base, peak)
--
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

==
Fortran | 603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak)
654.roms_s(base, peak)
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

SPECspeed®2017_fp_base = 176
SPECspeed®2017_fp_peak = 188

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Compiler Version Notes (Continued)

Fortran, C | 621.wrf_s(base, peak) 627.cam4_s(base, peak)
| 628.pop2_s(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

Base Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4_s: -DSPEC_CASE_FLAG -DSPEC_LP64
628.pop2_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

SPECspeed®2017_fp_base = 176
SPECspeed®2017_fp_peak = 188

Base Optimization Flags

C benchmarks:
- m64 -mno-adx -mno-sse4a -Wl,-mllvm -Wl,-function-specialize
- Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
- Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3
- fvecilb=AMDLIBM -ffast-math -f1to -fstruct-layout=5
- mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
- fremap-arrays -mllvm -function-specialize -f1v-function-specialization
- mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
- mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3 -z muldefs
- DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc
- lflang -lflangrti

Fortran benchmarks:
- m64 -mno-adx -mno-sse4a -Wl,-mllvm -Wl,-enable-X86-prefetching
- Wl,-mllvm -Wl,-enable-licm-vrp -Wl,-mllvm -Wl,-region-vectorize
- Wl,-mllvm -Wl,-function-specialize
- Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
- Wl,-mllvm -Wl,-reduce-array-computations=3 -Hz,1,0x1 -O3
- march=znver3 -fveclib=AMDLIBM -ffast-math -Mrecursive
- mllvm -fuse-tile-inner-loop -funroll-loops
- mllvm -extra-vectorizer-passes -mllvm -lsr-in-nested-loop
- mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3
- mllvm -global-vectorize-slp=true -z muldefs -DSPEC_OPENMP -fopenmp
- fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang -lflangrti

Benchmarks using both Fortran and C:
- m64 -mno-adx -mno-sse4a -Wl,-mllvm -Wl,-enable-X86-prefetching
- Wl,-mllvm -Wl,-enable-licm-vrp -Wl,-mllvm -Wl,-region-vectorize
- Wl,-mllvm -Wl,-function-specialize
- Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
- Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3
- fvecilb=AMDLIBM -ffast-math -f1to -fstruct-layout=5
- mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
- fremap-arrays -mllvm -function-specialize -f1v-function-specialization
- mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
- mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3 -Hz,1,0x1
- Mrecursive -mllvm -fuse-tile-inner-loop -funroll-loops
- mllvm -extra-vectorizer-passes -mllvm -lsr-in-nested-loop -z muldefs
- DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc
- lflang -lflangrti

Benchmarks using Fortran, C, and C++:
- m64 -mno-adx -mno-sse4a -std=c++98
- Wl,-mllvm -Wl,-x86-use-vzeroupper=false
- Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-function-specialize

(Continued on next page)
Base Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++ (continued):
- `-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6`
- `-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3`
- `-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5`
- `-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000`
- `-fremap-arrays -mllvm -function-specialize -flv-function-specialization`
- `-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true`
- `-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3`
- `-mllvm -enable-partial-unswitch -mllvm -unroll-threshold=100`
- `-mllvm -enable-licm-vrp -mllvm -loop-unswitch-threshold=200000`
- `-mllvm -reroll-loops -mllvm -aggressive-loop-unswitch`
- `-mllvm -extra-vectorizer-passes -mllvm -convert-pow-exp-to-int=false`
- `-Hz,1,0x1 -mrecursive -mllvm -fuse-tile-inner-loop -funroll-loops`
- `-mllvm -lsr-in-nested-loop -z muldefs -DSPEC_OPENMP -fopenmp`
- `-fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang -lflangrti`

Base Other Flags

C benchmarks:
- `-Wno-unused-command-line-argument -Wno-return-type`

Fortran benchmarks:
- `-Wno-unused-command-line-argument -Wno-return-type`

Benchmarks using both Fortran and C:
- `-Wno-unused-command-line-argument -Wno-return-type`

Benchmarks using Fortran, C, and C++:
- `-Wno-unused-command-line-argument -Wno-return-type`

Peak Compiler Invocation

C benchmarks:
- `clang`

Fortran benchmarks:
- `flang`

Benchmarks using both Fortran and C:
- `flang clang`
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.20 GHz, AMD EPYC 7343)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>176</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>188</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Date: May-2021
Test Sponsor: HPE
Hardware Availability: Jun-2021
Tested by: HPE
Software Availability: Mar-2021

Peak Compiler Invocation (Continued)

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

619.lbm_s: -m64 -mno-adx -mno-sse4a
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver3 -fveclib=AMDLIBM -ffast-math -flto
-fstruct-layout=5 -mllvm -unroll-threshold=50
-fremap-arrays -flv-function-specialization
-mllvm -inline-threshold=1000 -mllvm -enable-gvn-hoist
-mllvm -global-vectorize-slp=true
-mllvm -function-specialize -mllvm -enable-licm-vrp

638.imagick_s: basepeak = yes

Fortran benchmarks:

603.bwaves_s: -m64 -mno-adx -mno-sse4a
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize -Ofast -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5
-mllvm -unroll-threshold=50 -fremap-arrays
-flv-function-specialization -mllvm -inline-threshold=1000
-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
-mllvm -function-specialize -mllvm -enable-licm-vrp
-mllvm -reduce-array-computations=3 -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang

(Continued on next page)
Peak Optimization Flags (Continued)

603.bwaves_s (continued):
-Wl,-mlivm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlivm -Wl,-reduce-array-computations=3 -Ofast
-march=znver3 -fveclib=AMDLIBM -ffast-math -Mrecursive
-mlivm -reduce-array-computations=3
-mlivm -global-vectorize-slp=true -mlivm -enable-lcinm-vrp
-DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm
-ljemalloc -lflang

649.fotonik3d_s: basepeak = yes

654.roms_s: Same as 603.bwaves_s

Benchmarks using both Fortran and C:

621.wrf_s: basepeak = yes

627.cam4_s: -m64 -mno-adx -mno-sse4a
-Wl,-mlivm -Wl,-enable-X86-prefetching
-Wl,-mlivm -Wl,-enable-lcinm-vrp
-Wl,-mlivm -Wl,-function-specialize
-Wl,-mlivm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlivm -Wl,-reduce-array-computations=3 -Ofast
-march=znver3 -fveclib=AMDLIBM -ffast-math -flto
-fstruct-layout=5 -mlivm -unroll-threshold=50
-fremap-arrays -flv-function-specialization
-mlivm -inline-threshold=1000 -mlivm -enable-gvn-hoist
-mlivm -global-vectorize-slp=true
-mlivm -function-specialize -mlivm -enable-lcinm-vrp
-mlivm -reduce-array-computations=3 -Mrecursive
-DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm
-ljemalloc -lflang

628.pop2_s: basepeak = yes

Benchmarks using Fortran, C, and C++:
-m64 -mno-adx -mno-sse4a -std=c++98
-Wl,-mlivm -Wl,-x86-use-vzeroupper=false -Wl,-mlivm -Wl,-enable-lcinm-vrp
-Wl,-mlivm -Wl,-function-specialize
-Wl,-mlivm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlivm -Wl,-reduce-array-computations=3 -Ofast -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5
-mlivm -unroll-threshold=50 -fremap-arrays -flv-function-specialization
-mlivm -inline-threshold=1000 -mlivm -enable-gvn-hoist
-mlivm -global-vectorize-slp=true -mlivm -function-specialize
-mlivm -enable-lcinm-vrp -mlivm -reduce-array-computations=3

(Continued on next page)
Peak Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++ (continued):
- `-finline-aggressive` `-mllvm -unroll-threshold=100 -mllvm -reroll-loops`
- `-mllvm -aggressive-loop-unswitch -Mrecursive -DSPEC_OPENMP -fopenmp`
- `-fopenmp=libomp -lomp -lamdllibm -ljemalloc -lflang`

Peak Other Flags

C benchmarks:
- `-Wno-unused-command-line-argument` `-Wno-return-type`

Fortran benchmarks:
- `-Wno-unused-command-line-argument` `-Wno-return-type`

Benchmarks using both Fortran and C:
- `-Wno-unused-command-line-argument` `-Wno-return-type`

Benchmarks using Fortran, C, and C++:
- `-Wno-unused-command-line-argument` `-Wno-return-type`

The flags files that were used to format this result can be browsed at:

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.html

You can also download the XML flags sources by saving the following links:

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.xml

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.5 on 2020-04-01 13:25:54-0400.
Report generated on 2021-06-08 19:50:59 by CPU2017 PDF formatter v6442.
Originally published on 2021-06-08.