SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus v2
(3.20 GHz, AMD EPYC 74F3)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECspeed®2017_fp_base = 141
SPECspeed®2017_fp_peak = 145

Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Threads

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>24</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>24</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>24</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>24</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>24</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>24</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>24</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>24</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>24</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>24</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Name</td>
<td>AMD EPYC 74F3</td>
</tr>
<tr>
<td>Max MHz</td>
<td>4000</td>
</tr>
<tr>
<td>Nominal</td>
<td>3200</td>
</tr>
<tr>
<td>Enabled</td>
<td>24 cores, 1 chip, 2 threads/core</td>
</tr>
<tr>
<td>Orderable</td>
<td>1 chip</td>
</tr>
<tr>
<td>Cache L1</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>Cache L2</td>
<td>512 KB I+D on chip per core</td>
</tr>
<tr>
<td>Cache L3</td>
<td>256 MB I+D on chip per core, 32 MB shared / 3 cores</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
</tr>
<tr>
<td>Memory</td>
<td>1 TB (8 x 128 GB 4Rx4 PC4-3200AA-L)</td>
</tr>
<tr>
<td>Storage</td>
<td>1 x 800 GB SAS SSD, RAID 0</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>Ubuntu 20.04.1 LTS (x86_64)</td>
</tr>
<tr>
<td>Kernel</td>
<td>5.4.0-54-generic</td>
</tr>
<tr>
<td>Compiler</td>
<td>C/C++/Fortran: Version 3.0.0 of AOCC</td>
</tr>
<tr>
<td>Parallel</td>
<td>Yes</td>
</tr>
<tr>
<td>Firmware</td>
<td>HPE BIOS Version A43 v2.42 04/15/2021 released Apr-2021</td>
</tr>
<tr>
<td>File System</td>
<td>ext4</td>
</tr>
<tr>
<td>System State</td>
<td>Run level 5 (multi-user, GUI disabled)</td>
</tr>
<tr>
<td>Base Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Peak Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Other</td>
<td>jemalloc: jemalloc memory allocator library v5.1.0</td>
</tr>
<tr>
<td>Power Management</td>
<td>BIOS and OS set to prefer performance at the cost of additional power usage</td>
</tr>
</tbody>
</table>
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus v2
(3.20 GHz, AMD EPYC 74F3)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>24</td>
<td>149</td>
<td>397</td>
<td>149</td>
<td>396</td>
<td>149</td>
<td>396</td>
<td>149</td>
<td>396</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>24</td>
<td>80.4</td>
<td>207</td>
<td>80.7</td>
<td>206</td>
<td>80.5</td>
<td>207</td>
<td>80.4</td>
<td>207</td>
</tr>
<tr>
<td>619.ibm_s</td>
<td>24</td>
<td>136</td>
<td>87.6</td>
<td>136</td>
<td>87.6</td>
<td>136</td>
<td>87.6</td>
<td>136</td>
<td>87.6</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>24</td>
<td>99.0</td>
<td>146</td>
<td>98.7</td>
<td>146</td>
<td>99.0</td>
<td>146</td>
<td>98.7</td>
<td>146</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>24</td>
<td>120</td>
<td>76.1</td>
<td>119</td>
<td>76.3</td>
<td>120</td>
<td>76.0</td>
<td>120</td>
<td>76.0</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>24</td>
<td>109</td>
<td>145</td>
<td>108</td>
<td>145</td>
<td>108</td>
<td>145</td>
<td>109</td>
<td>145</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used. 'numactl' was used to bind copies to the cores. See the configuration file for details.

Operating System Notes

.ulimit -s unlimited' was used to set environment stack size
'ulimit -l 2097152' was used to set environment locked pages in memory limit
runcpu command invoked through numacl i.e.:
numactl --interleave=all runcpu <etc>
'echo 8 > /proc/sys/vm/dirty_ratio' run as root to limit dirty cache to 8% of memory.
'echo 1 > /proc/sys/vm/swappiness' run as root to limit swap usage to minimum necessary.
'echo 1 > /proc/sys/vm/zone_reclaim_mode' run as root to free node-local memory and avoid remote memory usage.
'sync; echo 3 > /proc/sys/vm/drop_caches' run as root to reset filesystem caches. 'sysctl -w kernel.randomize_va_space=0' run as root to disable address space layout randomization (ASLR) to reduce run-to-run variability. 'echo always > /sys/kernel/mm/transparent_hugepage/enabled' and 'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root to enable

(Continued on next page)
Operating System Notes (Continued)

Transparent Hugepages (THP) for this run.
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled' run as root for peak runs of 628.pop2_s and 638.imagick_s to enable THP only on request.

The real test date is Apr-2021. The clock was mistakenly set to 2020 before the benchmark was run.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-47"
LD_LIBRARY_PATH =
 "/cpu2017/amd_speed_aocc300_milan_B_lib/64;/cpu2017/amd_speed_aocc300_milan_B_lib/32:"
MALLOC_CONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "48"

Environment variables set by runcpu during the 619.lbm_s peak run:
GOMP_CPU_AFFINITY = "0-23"

Environment variables set by runcpu during the 644.nab_s peak run:
GOMP_CPU_AFFINITY = "0 24 1 25 2 26 3 27 4 28 5 29 6 30 7 31 8 32 9 33 10 34 11 35 12 36 13 37 14 38 15 39 16 40 17 41 18 42 19 43 20 44 21 45 22 46 23 47"

Environment variables set by runcpu during the 654.roms_s peak run:
GOMP_CPU_AFFINITY = "0-23"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7742 CPU + 1TiB Memory using openSUSE 15.2

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v4.8.2 in RHEL 7.4 (No options specified)
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2
Platform Notes

BIOS Configuration
- Workload Profile set to General Peak Frequency Compute
- Determinism Control set to Manual
- Performance Determinism set to Power Deterministic
- Last-Level Cache (LLC) as NUMA Node set to Enabled
- NUMA memory domains per socket set to One memory domain per socket
- Thermal Configuration set to Maximum Cooling
- Workload Profile set to Custom
- Infinity Fabric Power Management set to Disabled
- Infinity Fabric Performance State set to P0
- Power Regulator set to OS Control Mode

Sysinfo program /cpu2017/bin/sysinfo
Rev: r6538 of 2020-09-24 e8664e66d2d7080afeaa89d4b38e2f1c
running on dl325gen10plus Mon Apr 26 21:37:56 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
- model name : AMD EPYC 74F3 24-Core Processor
- 1 "physical id"s (chips)
- 48 "processors"
- cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
- cpu cores : 24
- siblings : 48
- physical 0: cores 0 1 2 4 5 6 8 9 10 12 13 14 16 17 18 20 21 22 24 25 26 28 29 30

From lscpu:
- Architecture: x86_64
- CPU op-mode(s): 32-bit, 64-bit
- Byte Order: Little Endian
- Address sizes: 48 bits physical, 48 bits virtual
- CPU(s): 48
- On-line CPU(s) list: 0-47
- Thread(s) per core: 2
- Core(s) per socket: 24
- Socket(s): 1
- NUMA node(s): 8
- Vendor ID: AuthenticAMD
- CPU family: 25
- Model: 1
- Model name: AMD EPYC 74F3 24-Core Processor
- Stepping: 1
- Frequency boost: enabled

(Continued on next page)
Hewlett Packard Enterprise

ProLiant DL325 Gen10 Plus v2
(3.20 GHz, AMD EPYC 74F3)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECspeed®2017_fp_base = 141
SPECspeed®2017_fp_peak = 145

Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Platform Notes (Continued)

CPU MHz: 1791.555
CPU max MHz: 3200.0000
CPU min MHz: 1500.0000
BogoMIPS: 6388.28
Virtualization: AMD-V
L1d cache: 768 KiB
L1i cache: 768 KiB
L2 cache: 12 MiB
L3 cache: 256 MiB
NUMA node0 CPU(s): 0-2,24-26
NUMA node1 CPU(s): 3-5,27-29
NUMA node2 CPU(s): 6-8,30-32
NUMA node3 CPU(s): 9-11,33-35
NUMA node4 CPU(s): 12-14,36-38
NUMA node5 CPU(s): 15-17,39-41
NUMA node6 CPU(s): 18-20,42-44
NUMA node7 CPU(s): 21-23,45-47
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtab clflushopt lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3nowprefetch osuw ibs k8t cee tce topoext perfctr_core perfctr_nb bpext perfctr_l1c mwai7x cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bml1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha ni xsaveopt xsavec xgetbv1 xsaveas cmqm_llc cmqm_occup_llc cmqm_mbm_total cmqm_mbm_local clzero irperf xsavespace wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpcmqlqdq rdpid overflow_recov succor smca

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus v2
(3.20 GHz, AMD EPYC 74F3)

SPECspeed®2017_fp_base = 141
SPECspeed®2017_fp_peak = 145

Platform Notes (Continued)

available: 8 nodes (0-7)
node 0 cpus: 0 1 2 24 25 26
node 0 size: 128775 MB
node 0 free: 128355 MB
node 1 cpus: 3 4 5 27 28 29
node 1 size: 129022 MB
node 1 free: 128906 MB
node 2 cpus: 6 7 8 30 31 32
node 2 size: 129022 MB
node 2 free: 128839 MB
node 3 cpus: 9 10 11 33 34 35
node 3 size: 128998 MB
node 3 free: 128860 MB
node 4 cpus: 12 13 14 36 37 38
node 4 size: 129022 MB
node 4 free: 128813 MB
node 5 cpus: 15 16 17 39 40 41
node 5 size: 129022 MB
node 5 free: 128859 MB
node 6 cpus: 18 19 20 42 43 44
node 6 size: 129022 MB
node 6 free: 128864 MB
node 7 cpus: 21 22 23 45 46 47
node 7 size: 116908 MB
node 7 free: 116807 MB
node distances:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

From /proc/meminfo
MemTotal: 1044270752 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance
/usr/bin/lsb_release -d
Ubuntu 20.04.1 LTS

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus v2
(3.20 GHz, AMD EPYC 74F3)

SPECspeed®2017_fp_base = 141
SPECspeed®2017_fp_peak = 145

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Platform Notes (Continued)

From /etc/*release* /etc/*version*
debian_version: bullseye/sid
os-release:
 NAME="Ubuntu"
 VERSION="20.04.1 LTS (Focal Fossa)"
 ID=ubuntu
 ID_LIKE=debian
 PRETTY_NAME="Ubuntu 20.04.1 LTS"
 VERSION_ID="20.04"
 HOME_URL="https://www.ubuntu.com/"
 SUPPORT_URL="https://help.ubuntu.com/"

uname -a:
 Linux dl325gen10plus 5.4.0-54-generic #60-Ubuntu SMP Fri Nov 6 10:37:59 UTC 2020
 x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2018-3639 (Speculative Store Bypass): Mitigation: usercopy/swaps barriers and __user pointer sanitization
CVE-2017-5753 (Spectre variant 1): Mitigation: Full AMD retpoline, IBPB: conditional, IBRS_FW, STIBP: always-on, RSB filling
CVE-2017-5715 (Spectre variant 2):
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 5 Apr 26 21:36

SPEC is set to: /cpu2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/sdb2 ext4 733G 24G 672G 4% /

From /sys/devices/virtual/dmi/id
 Vendor: HPE
 Product: ProLiant DL325 Gen10 Plus
 Product Family: ProLiant
 Serial: CN79290FKQ

Additional information from dmidecode follows. WARNING: Use caution when you interpret

(Continued on next page)
Platform Notes (Continued)

this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
8x Samsung M386AAG40AM3-CWE 128 GB 4 rank 3200
8x UNKNOWN NOT AVAILABLE

BIOS:
BIOS Vendor: HPE
BIOS Version: A43
BIOS Date: 04/15/2021
BIOS Revision: 2.42
Firmware Revision: 2.40

(End of data from sysinfo program)

Compiler Version Notes

C

619.lbm_s(base, peak) 638.imagick_s(base, peak)
644.nab_s(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C++, C, Fortran
607.cactuBSSN_s(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus v2
(3.20 GHz, AMD EPYC 74F3)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>141</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>145</td>
</tr>
</tbody>
</table>

Compiler Version Notes (Continued)

```
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

-----------------------------
Fortran  | 603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak) 654.roms_s(base, peak)
-----------------------------
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)  
Target: x86_64-unknown-linux-gnu  
Thread model: posix  
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

-----------------------------
Fortran, C  | 621.wrf_s(base, peak) 627.cam4_s(base, peak) 628.pop2_s(base, peak)
-----------------------------
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)  
Target: x86_64-unknown-linux-gnu  
Thread model: posix  
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

-----------------------------
Base Compiler Invocation

C benchmarks:  
clang

Fortran benchmarks:  
flang

Benchmarks using both Fortran and C:  
flang clang

Benchmarks using Fortran, C, and C++:  
clang++ clang flang
```
Base Portability Flags

603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4_s: -DSPEC_CASE_FLAG -DSPEC_LP64
628.pop2_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -mno-adx -mno-sse4a -Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-fremap-arrays -mllvm -function-specialize -flv-function-specialization
-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3 -z muldefs
-DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc
-lflang -lflangrti

Fortran benchmarks:
-m64 -mno-adx -mno-sse4a -Wl,-mllvm -Wl,-enable-X86-prefetching
-Wl,-mllvm -Wl,-enable-licm-vrp -Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Hz,1,0x1 -O3
-march=znver3 -m llvm -fveclib=AMDLIBM -ffast-math -Mrecursive
-mllvm -fuse-tile-inner-loop -funroll-loops
-mllvm -extra-vectorizer-passes -mllvm -lir-in-nested-loop
-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3
-mllvm -global-vectorize-slp=true -z muldefs -DSPEC_OPENMP -fopenmp
-fopenmp -lomp -ljemalloc -lflang -lflangrti

Benchmarks using both Fortran and C:
-m64 -mno-adx -mno-sse4a -Wl,-mllvm -Wl,-enable-X86-prefetching
-Wl,-mllvm -Wl,-enable-licm-vrp -Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
Base Optimization Flags (Continued)

Benchmarks using both Fortran and C (continued):
- `-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3`
- `-fvecclib=AMDLIBM -ffast-math -flto -fstruct-layout=5`
- `-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000`
- `-fremap-arrays -mllvm -function-specialize -flv-function-specialization`
- `-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true`
- `-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3 -Hz,1,0x1`
- `-Mrecursive -mllvm -fuse-tile-inner-loop -funroll-loops`
- `-mllvm -extra-vectorizer-passes -mllvm -lsr-in-nested-loop -z muldefs`
- `-DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang -lflangrti`

Benchmarks using Fortran, C, and C++:
- `-m64 -mno-adx -mno-sse4a -std=c++98`
- `-Wl,-mllvm -Wl,-x86-use-vzeroupper=false`
- `-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-function-specialize`
- `-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6`
- `-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3`
- `-fvecclib=AMDLIBM -ffast-math -flto -fstruct-layout=5`
- `-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000`
- `-fremap-arrays -mllvm -function-specialize -flv-function-specialization`
- `-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true`
- `-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3`
- `-mllvm -enable-partial-unswitch -mllvm -unroll-threshold=100`
- `-finline-aggressive -mllvm -loop-unswitch-threshold=200000`
- `-mllvm -reroll-loops -mllvm -aggressive-loop-unswitch`
- `-mllvm -extra-vectorizer-passes -mllvm -convert-pow-exp-to-int=false`
- `-Hz,1,0x1 -Mrecursive -mllvm -fuse-tile-inner-loop -funroll-loops`
- `-mllvm -lsr-in-nested-loop -z muldefs -DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang -lflangrti`

Base Other Flags

C benchmarks:
- `-Wno-unused-command-line-argument -Wno-return-type`

Fortran benchmarks:
- `-Wno-unused-command-line-argument -Wno-return-type`

Benchmarks using both Fortran and C:
- `-Wno-unused-command-line-argument -Wno-return-type`

Benchmarks using Fortran, C, and C++:
- `-Wno-unused-command-line-argument -Wno-return-type`
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus v2
(3.20 GHz, AMD EPYC 74F3)

SPECspeed®2017_fp_base = 141
SPECspeed®2017_fp_peak = 145

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Peak Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

619.lbm_s: -m64 -mno-adx -mno-sse4a
-Wl, -mllvm -Wl, -function-specialize
-Wl, -mllvm -Wl, -align-all-nofallthru-blocks=6
-Wl, -mllvm -Wl, -reduce-array-computations=3 -Ofast
-march=znver3 -fveclib=AMDLIBM -ffast-math -flto
-fstruct-layout=5 -mllvm -unroll-threshold=50
-fremap-arrays -flv-function-specialization
-mllvm -inline-threshold=1000 -mllvm -enable-gvn-hoist
-mllvm -global-vectorize-slp=true
-mllvm -function-specialize -mllvm -enable-licom-vrp
-mllvm -reduce-array-computations=3 -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -landlibm -ljemalloc -lflang

638.imagick_s: basepeak = yes

644.nab_s: -m64 -mno-adx -mno-sse4a -Wl, -mllvm -Wl, -region-vectorize
-Wl, -mllvm -Wl, -function-specialize -Ofast -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5
-mllvm -unroll-threshold=50 -fremap-arrays
-flv-function-specialization -mllvm -inline-threshold=1000
-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
-mllvm -function-specialize -mllvm -enable-licom-vrp

(Continued on next page)
Peak Optimization Flags (Continued)

644.nab_s (continued):
 -mllvm -reduce-array-computations=3 -DSPEC_OPENMP -fopenmp
 -fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang

Fortran benchmarks:

603.bwaves_s: basepeak = yes

649.fotonik3d_s: basepeak = yes

654.roms_s: -m64 -mno-adx -mno-sse4a
 -Wl,-mllvm -Wl,-enable-X86-prefetching
 -Wl,-mllvm -Wl,-enable-licm-vrp
 -Wl,-mllvm -Wl,-function-specialize
 -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
 -Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
 -march=znver3 -fveclib=AMDLIBM -ffast-math -Mrecursive
 -mllvm -reduce-array-computations=3
 -mllvm -global-vectorize-slp=true -mllvm -enable-licm-vrp
 -DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm
 -ljemalloc -lflang

Benchmarks using both Fortran and C:

621.wrf_s: basepeak = yes

627.cam4_s: basepeak = yes

628.pop2_s: basepeak = yes

Benchmarks using Fortran, C, and C++:

607.cactuBSSN_s: basepeak = yes

Peak Other Flags

C benchmarks:
 -Wno-unused-command-line-argument -Wno-return-type

Fortran benchmarks:
 -Wno-unused-command-line-argument -Wno-return-type

Benchmarks using both Fortran and C:
 -Wno-unused-command-line-argument -Wno-return-type

(Continued on next page)
Peak Other Flags (Continued)

Benchmarks using Fortran, C, and C++:
- `-Wno-unused-command-line-argument`
- `-Wno-return-type`

The flags files that were used to format this result can be browsed at:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.xml