SPEC® CPU2017 Floating Point Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>93.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_fp_peak</td>
<td>95.8</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Hardware

- **CPU Name:** Intel Xeon Silver 4209T
- **Max MHz.:** 3200
- **Nominal:** 2200
- **Enabled:** 16 cores, 2 chips, 2 threads/core
- **Orderable:** 1.2 chips
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **L2:** 1 MB I+D on chip per core
- **L3:** 11 MB I+D on chip per chip
- **Memory:** 192 GB (12 x 16 GB 2Rx8 PC4-2933Y-R, running at 2400)
- **Storage:** 1 x 1200 GB SAS, 10000 RPM
- **Other:** None

Software

- **OS:** SUSE Linux Enterprise Server 12 SP4 (x86_64)
- **Compiler:** C/C++: Version 19.0.1.144 of Intel C/C++
- **Compiler Build:** 20181018 for Linux
- **Fortran:** Version 19.0.1.144 of Intel Fortran
- **Compiler Build:** 20181018 for Linux
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** None

Copies
503.bwaves_r | 32
507.cactuBSSN_r | 32
508.namd_r | 32
510.parest_r | 32
511.povray_r | 32
519.lbm_r | 32
521.wrf_r | 32
526.blender_r | 32
527.cam4_r | 32
538.imagick_r | 32
544.nab_r | 32
549.fotonik3d_r | 32
554.roms_r | 32

SPECrate2017_fp_base (93.1)
SPECrate2017_fp_peak (95.8)
SPEC CPU2017 Floating Point Rate Result
Copyright 2017-2019 Standard Performance Evaluation Corporation

Huawei
Huawei 2288 V5 (Intel Xeon Silver 4209T)

SPECrate2017_fp_base = 93.1
SPECrate2017_fp_peak = 95.8

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Base</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Peak</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>32</td>
<td>1045</td>
<td>307</td>
<td>1044</td>
<td>307</td>
<td>1044</td>
<td>307</td>
<td>1044</td>
<td>307</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>32</td>
<td>575</td>
<td>70.4</td>
<td>576</td>
<td>70.3</td>
<td>576</td>
<td>70.4</td>
<td>576</td>
<td>70.4</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>32</td>
<td>515</td>
<td>59.0</td>
<td>514</td>
<td>59.2</td>
<td>517</td>
<td>58.8</td>
<td>514</td>
<td>59.1</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>32</td>
<td>1451</td>
<td>57.7</td>
<td>1453</td>
<td>57.6</td>
<td>1458</td>
<td>57.4</td>
<td>1451</td>
<td>57.7</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>32</td>
<td>799</td>
<td>93.5</td>
<td>807</td>
<td>92.6</td>
<td>805</td>
<td>92.8</td>
<td>805</td>
<td>92.8</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>32</td>
<td>528</td>
<td>63.8</td>
<td>529</td>
<td>63.7</td>
<td>529</td>
<td>63.8</td>
<td>529</td>
<td>63.8</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>32</td>
<td>660</td>
<td>109</td>
<td>664</td>
<td>108</td>
<td>664</td>
<td>108</td>
<td>664</td>
<td>108</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>32</td>
<td>560</td>
<td>87.0</td>
<td>559</td>
<td>87.1</td>
<td>560</td>
<td>87.0</td>
<td>560</td>
<td>87.1</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>32</td>
<td>648</td>
<td>86.4</td>
<td>657</td>
<td>85.2</td>
<td>654</td>
<td>85.6</td>
<td>654</td>
<td>85.6</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>32</td>
<td>462</td>
<td>172</td>
<td>462</td>
<td>172</td>
<td>467</td>
<td>171</td>
<td>462</td>
<td>172</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>32</td>
<td>415</td>
<td>130</td>
<td>415</td>
<td>130</td>
<td>416</td>
<td>129</td>
<td>415</td>
<td>130</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>32</td>
<td>1230</td>
<td>101</td>
<td>1228</td>
<td>102</td>
<td>1231</td>
<td>101</td>
<td>1233</td>
<td>101</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>32</td>
<td>1026</td>
<td>49.6</td>
<td>1024</td>
<td>49.6</td>
<td>1027</td>
<td>49.5</td>
<td>1027</td>
<td>49.5</td>
</tr>
</tbody>
</table>

SPECrate2017_fp_base = 93.1
SPECrate2017_fp_peak = 95.8

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes
The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor.
For details, please see the config file.

Operating System Notes
Stack size set to unlimited using "ulimit -s unlimited"

General Notes
Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/spec2017/lib/ia32:/spec2017/lib/intel64"
Binaries compiled on a system with 1x Intel Core i9-7900X CPU + 32GB RAM
memory using Redhat Enterprise Linux 7.5
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3> /proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

(Continued on next page)
SPEC CPU2017 Floating Point Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>SPECrate2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.1</td>
<td>95.8</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

General Notes (Continued)

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS configuration:
- Power Policy Set to Performance
- XPT Prefetch Set to Enabled
- Sysinfo program `/spec2017/bin/sysinfo`
- Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcb091c0f
- running on linux-0o4j Fri Mar 22 18:06:20 2019

SUT (System Under Test) info as seen by some common utilities.

For more information on this section, see https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From `/proc/cpuinfo`

- model name : Intel(R) Xeon(R) Silver 4209T CPU @ 2.20GHz
- 2 "physical id"s (chips)
- 32 "processors"
- cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from `/proc/cpuinfo` might not be reliable. Use with caution.)
 - cpu cores : 8
 - siblings : 16
 - physical 0: cores 0 1 2 3 4 5 6 7
 - physical 1: cores 0 1 2 3 4 5 6 7

From `lscpu`:

- Architecture: x86_64
- CPU op-mode(s): 32-bit, 64-bit
- Byte Order: Little Endian
- CPU(s): 32
- On-line CPU(s) list: 0-31
- Thread(s) per core: 2
- Core(s) per socket: 8
- Socket(s): 2
- NUMA node(s): 2
- Vendor ID: GenuineIntel
- CPU family: 6
- Model: 85
- Model name: Intel(R) Xeon(R) Silver 4209T CPU @ 2.20GHz
- Stepping: 6
- CPU MHz: 2200.000
- CPU max MHz: 3200.000

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

SPECrate2017_fp_base = 93.1
SPECrate2017_fp_peak = 95.8

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

CPU min MHz: 1000.0000
BogoMIPS: 4400.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 11264K
NUMA node0 CPU(s): 0-7,16-23
NUMA node1 CPU(s): 8-15,24-31

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good noapic xtopology nonstop_tsc cpuid
aperf perf prof pinnacle dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm
pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c
rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat13 cdp13 invpcid_single ssbd
mca ibrs ibpb stibp tpr_shadow vmm nonshadow vmp券 tsc_adjust bmi1
hle avx2 smep bmi2 erms invpcid rtm cqm mxpx cmov setds kswap dts aperf movbe
pcid dca sse4_1 sse4_2 x2apic movbe popcnt_tsc deadlinetimer aes xsave avx f16c
rdrand lahf_lm abm 3dnowprefetch cpuid fault epb cat13 cdp13 invpcid_single ssbd
mca ibrs ibpb stibp tpr_shadow vmm nonshadow vmp券 tsc_adjust bmi1
hle avx2 smep bmi2 erms invpcid rtm cqm mxpx cmov setds kswap dts aperf movbe

/platform_notes (Continued)

/proc/cpuinfo cache data
 cache size : 11264 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
 physical chip.
 available: 2 nodes (0-1)
 node 0 cpus: 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23
 node 0 size: 95165 MB
 node 0 free: 94085 MB
 node 1 cpus: 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31
 node 1 size: 96499 MB
 node 1 free: 95309 MB
 node distances:
 node 0 1
 0: 10 21
 1: 21 10

From /proc/meminfo
 MemTotal: 196265040 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 SuSE-release:
 SUSE Linux Enterprise Server 12 (x86_64)
 VERSION = 12

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

SPECrate2017_fp_base = 93.1
SPECrate2017_fp_peak = 95.8

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
Tested by: Huawei
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Platform Notes (Continued)

PATCHLEVEL = 4
This file is deprecated and will be removed in a future service pack or release.
Please check /etc/os-release for details about this release.

os-release:
 NAME="SLES"
 VERSION="12-SP4"
 VERSION_ID="12.4"
 PRETTY_NAME="SUSE Linux Enterprise Server 12 SP4"
 ID="sles"
 ANSI_COLOR="0;32"
 CPE_NAME="cpe:/o:suse:sles:12:sp4"

uname -a:
 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Mar 22 08:13

SPEC is set to: /spec2017

Filesystem Type Size Used Avail Use% Mounted on
/dev/sda2 xfs 919G 11G 909G 2% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

BIOS INSYDE Corp. 6.52 03/16/2019
Memory:
 4x NO DIMM NO DIMM
 12x Samsung M393A2K43CB2-CVF 16 GB 2 rank 2933, configured at 2400

(End of data from sysinfo program)

Compiler Version Notes

==
CC 519.lbm_r(base) 538.imagick_r(base, peak) 544.nab_r(base, peak)
==

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
 Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

==
CC 519.lbm_r(peak)
==

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

SPECrate2017_fp_base = 93.1
SPECrate2017_fp_peak = 95.8

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>Huawei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
</tbody>
</table>

Compiler Version Notes (Continued)

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CXXC 508.namd_r(base) 510.parest_r(base, peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CXXC 508.namd_r(peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CC 511.povray_r(base) 526.blender_r(base, peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CC 511.povray_r(peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

FC 507.cactuBSSN_r(base, peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64,
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>93.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_fp_peak</td>
<td>95.8</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Hardware Availability: Apr-2019
Software Availability: Dec-2018
Test Date: Mar-2019

Compiler Version Notes (Continued)

Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

Intel (R) C Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

Intel (R) Fortran Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

FC 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak) 554.roms_r(base)

Intel (R) Fortran Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

FC 554.roms_r(peak)

Intel (R) Fortran Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CC 521.wrf_r(base) 527.cam4_r(base)

Intel (R) Fortran Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

Intel (R) C Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CC 521.wrf_r(peak) 527.cam4_r(peak)

Intel (R) Fortran Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

Intel (R) C Intel (R) 64 Compiler for applications running on Intel (R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
Huawei 2288 V5 (Intel Xeon Silver 4209T)

SPECrate2017_fp_base = 93.1
SPECrate2017_fp_peak = 95.8

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
Tested by: Huawei
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Base Compiler Invocation

C benchmarks:
icc -m64 -std=c11

C++ benchmarks:
icpc -m64

Fortran benchmarks:
ifort -m64

Benchmarks using both Fortran and C:
ifort -m64 icc -m64 -std=c11

Benchmarks using both C and C++:
icpc -m64 icc -m64 -std=c11

Benchmarks using Fortran, C, and C++:
icpc -m64 icc -m64 -std=c11 ifort -m64

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

C++ benchmarks:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

SPECrate2017_fp_base = 93.1
SPECrate2017_fp_peak = 95.8

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Base Optimization Flags (Continued)

C++ benchmarks (continued):
-qopt-mem-layout-trans=4

Fortran benchmarks:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Benchmarks using both Fortran and C:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Benchmarks using both C and C++:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

Benchmarks using Fortran, C, and C++:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Peak Compiler Invocation

C benchmarks:
icc -m64 -std=c11

C++ benchmarks:
icpc -m64

Fortran benchmarks:
ifort -m64

Benchmarks using both Fortran and C:
ifort -m64 icc -m64 -std=c11

Benchmarks using both C and C++:
icpc -m64 icc -m64 -std=c11

Benchmarks using Fortran, C, and C++:
icpc -m64 icc -m64 -std=c11 ifort -m64
SPEC CPU2017 Floating Point Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>SPECrate2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.1</td>
<td>95.8</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019

Tested by: Huawei
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

519.ibm_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

538.imagick_r: basepeak = yes

544.nab_r: basepeak = yes

C++ benchmarks:

508.namd_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

510.parest_r: basepeak = yes

Fortran benchmarks:

503.bwaves_r: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -auto
-nostandard-realloc-lhs -align array32byte

549.fotonik3d_r: Same as 503.bwaves_r

554.roms_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Benchmarks using both Fortran and C:

-prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Benchmarks using both C and C++:

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4209T)

| SPECrate2017_fp_base | 93.1 |
| SPECrate2017_fp_peak | 95.8 |

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Peak Optimization Flags (Continued)

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4

526.blender_r -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4

Benchmarks using Fortran, C, and C++:

507.cactusBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9-revC.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2019-03-22 06:06:19-0400.