Huawei

Huawei 1288H V5 (Intel Xeon Gold 5115)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base = 103</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak = 110</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Jan-2018
Hardware Availability: Jul-2017
Software Availability: Sep-2017

CPU Name: Intel Xeon Gold 5115
Max MHz.: 3200
Nominal: 2400
Enabled: 20 cores, 2 chips, 2 threads/core
Orderable: 1.2 chips
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 13.75 MB I+D on chip per chip
Other: None
Memory: 384 GB (24 x 16 GB 2Rx8 PC4-2666V-R, running at 2400)
Storage: 1 x 1200 GB SAS, 10000 RPM
Other: None

OS: SUSE Linux Enterprise Server 12 SP2 (x86_64) 4.4.21-69-default
Compiler: C/C++: Version 18.0.0.128 of Intel C/C++
Compiler for Linux:
Fortran: Version 18.0.0.128 of Intel Fortran
Compiler for Linux
Parallel: No
Firmware: Version 0.31 Released Sep-2017
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 32/64-bit
Other: jemalloc: jemalloc memory allocator library V5.0.1

<table>
<thead>
<tr>
<th>Copies</th>
<th>SPECrate2017_int_base (103)</th>
<th>SPECrate2017_int_peak (110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbenc_h_r 40</td>
<td>80.5</td>
<td>98.0</td>
</tr>
<tr>
<td>502.gcc_r 40</td>
<td>93.4</td>
<td>99.4</td>
</tr>
<tr>
<td>505.mcf_r 40</td>
<td>68.1</td>
<td>128</td>
</tr>
<tr>
<td>520.omnetpp_r 40</td>
<td>68.1</td>
<td>104</td>
</tr>
<tr>
<td>523.xalancbmk_r 40</td>
<td>104</td>
<td>127</td>
</tr>
<tr>
<td>525.x264_r 40</td>
<td>104</td>
<td>127</td>
</tr>
<tr>
<td>531.deepsjeng_r 40</td>
<td>90.7</td>
<td>196</td>
</tr>
<tr>
<td>541.leela_r 40</td>
<td>82.1</td>
<td>127</td>
</tr>
<tr>
<td>548.exchange2_r 40</td>
<td>84.6</td>
<td>195</td>
</tr>
<tr>
<td>557.xz_r 40</td>
<td>72.1</td>
<td>195</td>
</tr>
</tbody>
</table>
Huawei

Huawei 1288H V5 (Intel Xeon Gold 5115)

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>40</td>
<td>790</td>
<td>80.6</td>
<td>799</td>
<td>79.7</td>
<td>791</td>
<td>80.5</td>
<td>40</td>
<td>646</td>
<td>98.6</td>
<td>650</td>
<td>98.0</td>
<td>651</td>
<td>97.7</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>40</td>
<td>606</td>
<td>93.5</td>
<td>607</td>
<td>93.4</td>
<td>609</td>
<td>93.0</td>
<td>40</td>
<td>512</td>
<td>111</td>
<td>514</td>
<td>110</td>
<td>514</td>
<td>110</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>40</td>
<td>493</td>
<td>131</td>
<td>512</td>
<td>126</td>
<td>504</td>
<td>128</td>
<td>40</td>
<td>493</td>
<td>131</td>
<td>512</td>
<td>126</td>
<td>504</td>
<td>128</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>40</td>
<td>765</td>
<td>68.6</td>
<td>770</td>
<td>68.1</td>
<td>772</td>
<td>67.9</td>
<td>40</td>
<td>765</td>
<td>68.6</td>
<td>770</td>
<td>68.1</td>
<td>772</td>
<td>67.9</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>40</td>
<td>405</td>
<td>104</td>
<td>403</td>
<td>105</td>
<td>405</td>
<td>104</td>
<td>40</td>
<td>333</td>
<td>127</td>
<td>332</td>
<td>127</td>
<td>332</td>
<td>127</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>40</td>
<td>355</td>
<td>198</td>
<td>357</td>
<td>196</td>
<td>360</td>
<td>195</td>
<td>40</td>
<td>337</td>
<td>208</td>
<td>341</td>
<td>205</td>
<td>334</td>
<td>209</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>40</td>
<td>498</td>
<td>92.0</td>
<td>506</td>
<td>90.7</td>
<td>505</td>
<td>90.7</td>
<td>40</td>
<td>498</td>
<td>92.0</td>
<td>506</td>
<td>90.7</td>
<td>505</td>
<td>90.7</td>
</tr>
<tr>
<td>541.leea_r</td>
<td>40</td>
<td>808</td>
<td>82.0</td>
<td>807</td>
<td>82.1</td>
<td>803</td>
<td>82.5</td>
<td>40</td>
<td>788</td>
<td>84.0</td>
<td>783</td>
<td>84.6</td>
<td>782</td>
<td>84.7</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>40</td>
<td>537</td>
<td>195</td>
<td>536</td>
<td>195</td>
<td>537</td>
<td>195</td>
<td>40</td>
<td>537</td>
<td>195</td>
<td>537</td>
<td>195</td>
<td>536</td>
<td>196</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>40</td>
<td>556</td>
<td>77.7</td>
<td>602</td>
<td>71.8</td>
<td>599</td>
<td>72.1</td>
<td>40</td>
<td>556</td>
<td>77.7</td>
<td>602</td>
<td>71.8</td>
<td>599</td>
<td>72.1</td>
</tr>
</tbody>
</table>

SPECrate2017_int_base = 103
SPECrate2017_int_peak = 110

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

Binaries compiled on a system with 1x Intel Core i7-4790 CPU + 32GB RAM
memory using Redhat Enterprise Linux 7.4
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3> /proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
umactl --interleave=all runcpu <etc>

jemalloc: configured and built at default for
32bit (i686) and 64bit (x86_64) targets;
jemalloc: built with the RedHat Enterprise 7.4,
and the system compiler gcc 4.8.5;
jemalloc: sources available from jemalloc.net or

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei
Huawei 1288H V5 (Intel Xeon Gold 5115)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>110</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jan-2018
Hardware Availability: Jul-2017
Software Availability: Sep-2017

General Notes (Continued)

No: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
No: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
No: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

This benchmark result is intended to provide perspective on past performance using the historical hardware and/or software described on this result page.

The system as described on this result page was formerly generally available. At the time of this publication, it may not be shipping, and/or may not be supported, and/or may fail to meet other tests of General Availability described in the SPEC OSG Policy document, http://www.spec.org/osg/policy.html

This measured result may not be representative of the result that would be measured were this benchmark run with hardware and software available as of the publication date.

Platform Notes

BIOS configuration:
Power Policy Set to Performance
XPT Prefetch Set to Enabled
Sysinfo program /spec2017/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcc091c0f
running on linux-hyq4 Wed Jan 24 07:23:58 2018

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz
 2 "physical id"s (chips)
 40 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 10
siblings : 20
physical 0: cores 0 1 2 3 4 8 9 10 11 12
physical 1: cores 0 1 2 3 4 8 9 10 11 12

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei
Huawei 1288H V5 (Intel Xeon Gold 5115)

SPECrate2017_int_base = 103
SPECrate2017_int_peak = 110

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jan-2018
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Platform Notes (Continued)

From lscpu:
 Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Byte Order: Little Endian
 CPU(s): 40
 On-line CPU(s) list: 0-39
 Thread(s) per core: 2
 Core(s) per socket: 10
 Socket(s): 2
 NUMA node(s): 2
 Vendor ID: GenuineIntel
 CPU family: 6
 Model: 85
 Model name: Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz
 Stepping: 4
 CPU MHz: 2400.111
 BogoMIPS: 4800.22
 Virtualization: VT-x
 L1d cache: 32K
 L1i cache: 32K
 L2 cache: 1024K
 L3 cache: 14080K
 NUMA node0 CPU(s): 0-9,20-29
 NUMA node1 CPU(s): 10-19,30-39
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
 pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
 lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
 aperfmperf eagerfpu pni pclmulqdq dtes64 tsx dvereten smx est tm2 ssse3 sdbg fma cx16
 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
 avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pml dts dil3 intel_pt
 tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2
 erms invpcid rtm cqm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd
 avx512bw avx512vl xsaveopt xsavec xckce vmm meer l4lb 4cblt divprec setmmx
 rdtsc mmclflush dtes64_64bit tsx_semantics

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
 available: 2 nodes (0-1)
 node 0 cpus: 0 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29
 node 0 size: 191498 MB
 node 0 free: 190153 MB
 node 1 cpus: 10 11 12 13 14 15 16 17 18 19 30 31 32 33 34 35 36 37 38 39
 node 1 size: 193412 MB
 node 1 free: 192161 MB

(Continued on next page)
Huawei
Huawei 1288H V5 (Intel Xeon Gold 5115)

SPECrate2017_int_base = 103
SPECrate2017_int_peak = 110

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jan-2018
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Platform Notes (Continued)

node distances:
node 0 1
0: 10 21
1: 21 10

From /proc/meminfo
MemTotal: 394148704 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release*/etc/*version*/
SuSE-release:
 SUSE Linux Enterprise Server 12 (x86_64)
 VERSION = 12
 PATCHLEVEL = 2
 # This file is deprecated and will be removed in a future service pack or release.
 # Please check /etc/os-release for details about this release.
os-release:
 NAME="SLES"
 VERSION="12-SP2"
 VERSION_ID="12.2"
 PRETTY_NAME="SUSE Linux Enterprise Server 12 SP2"
 ID="sles"
 ANSI_COLOR="0;32"
 CPE_NAME="cpe:/o:suse:sles:12:sp2"

uname -a:
Linux linux-hyq4 4.4.21-69-default #1 SMP Tue Oct 25 10:58:20 UTC 2016 (9464f67)
x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Jan 23 21:43

SPEC is set to: /spec2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/sda2 xfs 828G 57G 772G 7% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret
this section. The 'dmidecode' program reads system data which is "intended to allow
hardware to be accurately determined", but the intent may not be met, as there are
frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
 BIOS INSYDE Corp. 0.31 09/29/2017
 Memory:
 24x Samsung M393A2K43BB1-CTD 16 GB 2 rank 2666, configured at 2400

(End of data from sysinfo program)
Huawei
Huawei 1288H V5 (Intel Xeon Gold 5115)

SPECrate2017_int_base = 103
SPECrate2017_int_peak = 110

CPU2017 License: 3175 Test Date: Jan-2018
Test Sponsor: Huawei Hardware Availability: Jul-2017
Tested by: Huawei Software Availability: Sep-2017

Compiler Version Notes

==
CC 500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base, peak)
 525.x264_r(base, peak) 557.xz_r(base, peak)
==
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
CC 500.perlbench_r(peak) 502.gcc_r(peak)
==
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
CXXC 520.omnetpp_r(base) 523.xalancbmk_r(base) 531.deepsjeng_r(base)
 541.leela_r(base)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
CXXC 520.omnetpp_r(peak) 523.xalancbmk_r(peak) 531.deepsjeng_r(peak)
 541.leela_r(peak)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
FC 548.exchange2_r(base, peak)
==
ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icc

C++ benchmarks:
icpc

(Continued on next page)
Huawei

Huawei 1288H V5 (Intel Xeon Gold 5115)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License</th>
<th>Test Date</th>
<th>Test Sponsor</th>
<th>Hardware Availability</th>
<th>Tested by</th>
<th>Software Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>3175</td>
<td>Jan-2018</td>
<td>Huawei</td>
<td>Jul-2017</td>
<td>Huawei</td>
<td>Sep-2017</td>
</tr>
</tbody>
</table>

Base Compiler Invocation (Continued)

Fortran benchmarks:
ifort

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-W1, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

C++ benchmarks:
-W1, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:
-W1, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte
-L/usr/local/je5.0.1-64/lib -ljemalloc

Base Other Flags

C benchmarks:
-m64 -std=c11

C++ benchmarks:
-m64
SPEC CPU2017 Integer Rate Result

<table>
<thead>
<tr>
<th></th>
<th>Huawei 1288H V5 (Intel Xeon Gold 5115)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_base</td>
<td>103</td>
</tr>
<tr>
<td>SPECrate2017_int_peak</td>
<td>110</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175

Test Sponsor: Huawei

Tested by: Huawei

Test Date: Jan-2018

Hardware Availability: Jul-2017

Software Availability: Sep-2017

Base Other Flags (Continued)

- **Fortran benchmarks:**
 - `-m64`

Peak Compiler Invocation

- **C benchmarks:**
 - `icc`
- **C++ benchmarks:**
 - `icpc`
- **Fortran benchmarks:**
 - `ifort`

Peak Portability Flags

- `500.perlbench_r`: `-DSPEC_LP64 -DSPEC_LINUX_X64`
- `502.gcc_r`: `-D_FILE_OFFSET_BITS=64`
- `505.mcf_r`: `-DSPEC_LP64`
- `520.omnetpp_r`: `-DSPEC_LP64`
- `523.xalancbmk_r`: `-D_FILE_OFFSET_BITS=64 -DSPEC_LINUX`
- `525.x264_r`: `-DSPEC_LP64`
- `531.deepsjeng_r`: `-DSPEC_LP64`
- `541.leela_r`: `-DSPEC_LP64`
- `548.exchange2_r`: `-DSPEC_LP64`
- `557.xz`: `-DSPEC_LP64`

Peak Optimization Flags

- **C benchmarks:**
 - `500.perlbench_r`: `-Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3 -fno-strict-overflow -L/usr/local/je5.0.1-64/lib -ljemalloc`
 - `-Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-32/lib -ljemalloc`

Continued on next page
Peak Optimization Flags (Continued)

505.mcf_r: basepeak = yes

525.x264_r: -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=3 -fno-alias -L/usr/local/je5.0.1-64/lib -ljemalloc

557.xz_r: basepeak = yes

C++ benchmarks:

520.omnetpp_r: basepeak = yes

523.xalancbmk_r: -L/opt/intel/compilers_and_libraries_2018/linux/lib/ia32 -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: basepeak = yes

541.leela_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte -L/usr/local/je5.0.1-64/lib -ljemalloc

Peak Other Flags

C benchmarks (except as noted below):
-m64 -std=c11

502.gcc_r: -m32 -std=c11

C++ benchmarks (except as noted below):
-m64

523.xalancbmk_r: -m32

Fortran benchmarks:
-m64
Huawei

Huawei 1288H V5 (Intel Xeon Gold 5115)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>110</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175

Test Sponsor: Huawei

Test Date: Jan-2018

Hardware Availability: Jul-2017

Tested by: Huawei

Software Availability: Sep-2017

The flags files that were used to format this result can be browsed at

http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html

You can also download the XML flags sources by saving the following links:

http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml

http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.