SPEC® CPU2017 Integer Rate Result

Huawei

Huawei CH121 V5 (Intel Xeon Silver 4116)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base = 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak = 117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License: 3175</th>
<th>Test Date: Dec-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Sep-2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Name: Intel Xeon Silver 4116</td>
<td>OS: Red Hat Enterprise Linux Server release 7.3 (Maipo) 3.10.0-514.el7.x86_64</td>
</tr>
<tr>
<td>Max MHz.: 3000</td>
<td>Compiler: C/C++: Version 18.0.0.128 of Intel C/C++ Compiler for Linux; Fortran: Version 18.0.0.128 of Intel Fortran Compiler for Linux</td>
</tr>
<tr>
<td>Nominal: 2100</td>
<td>Parallel: No</td>
</tr>
<tr>
<td>Enabled: 24 cores, 2 chips, 2 threads/core</td>
<td>Firmware: Version 0.31 Released Sep-2017</td>
</tr>
<tr>
<td>Orderable: 1.2 chips</td>
<td>File System: xfs</td>
</tr>
<tr>
<td>Cache L1: 32 KB I + 32 KB D on chip per core</td>
<td>System State: Run level 3 (multi-user)</td>
</tr>
<tr>
<td>L2: 1 MB I+D on chip per core</td>
<td>Base Pointers: 64-bit</td>
</tr>
<tr>
<td>L3: 16.5 MB I+D on chip per chip</td>
<td>Peak Pointers: 32/64-bit</td>
</tr>
<tr>
<td>Other: None</td>
<td>Other: jemalloc: jemalloc memory allocator library V5.0.1</td>
</tr>
<tr>
<td>Memory: 384 GB (24 x 16 GB 2Rx8 PC4-2666V-R, running at 2400)</td>
<td></td>
</tr>
<tr>
<td>Storage: 1 x 1200 GB SAS, 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>Other: None</td>
<td></td>
</tr>
</tbody>
</table>

Copies

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>48</td>
<td>84.7</td>
<td>104</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>48</td>
<td>98.6</td>
<td>116</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>48</td>
<td>74.9</td>
<td>140</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>48</td>
<td>112</td>
<td>135</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>48</td>
<td>95.6</td>
<td>204</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>48</td>
<td>84.8</td>
<td>201</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>557.xz_r</td>
<td>48</td>
<td>81.0</td>
<td>214</td>
</tr>
</tbody>
</table>

Note: The data presented in this report is based on the SPEC® CPU2017 benchmark suite. The results reflect the performance of the hardware configuration tested, with the system running specific test suites to evaluate integer rate performance. The SPEC® CPU2017 benchmark suite is designed to measure the performance of processors in a variety of applications, providing a standardized method for comparing the performance of different systems. This specific report details the results obtained from testing a Huawei CH121 V5 system with an Intel Xeon Silver 4116 processor, outlining the configurations and results in detail.
Huawei

Huawei CH121 V5 (Intel Xeon Silver 4116)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>48</td>
<td>900</td>
<td>84.9</td>
<td>903</td>
<td>84.7</td>
<td>908</td>
<td>84.2</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>48</td>
<td>684</td>
<td>99.3</td>
<td>733</td>
<td>92.8</td>
<td>689</td>
<td>98.6</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>48</td>
<td>556</td>
<td>140</td>
<td>555</td>
<td>140</td>
<td>569</td>
<td>136</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>48</td>
<td>844</td>
<td>74.6</td>
<td>835</td>
<td>75.4</td>
<td>841</td>
<td>74.9</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>48</td>
<td>453</td>
<td>112</td>
<td>452</td>
<td>112</td>
<td>453</td>
<td>112</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>48</td>
<td>412</td>
<td>204</td>
<td>406</td>
<td>207</td>
<td>413</td>
<td>204</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>48</td>
<td>577</td>
<td>95.3</td>
<td>576</td>
<td>95.6</td>
<td>575</td>
<td>95.7</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>48</td>
<td>939</td>
<td>84.7</td>
<td>937</td>
<td>84.8</td>
<td>934</td>
<td>85.1</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>48</td>
<td>625</td>
<td>201</td>
<td>625</td>
<td>201</td>
<td>625</td>
<td>201</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>48</td>
<td>700</td>
<td>74.1</td>
<td>640</td>
<td>81.0</td>
<td>623</td>
<td>83.2</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

```
```

Binaries compiled on a system with 1x Intel Core i7-4790 CPU + 32GB RAM memory using Redhat Enterprise Linux 7.4

Transparent Huge Pages enabled by default

Prior to runcpu invocation

Filesystem page cache synced and cleared with:

```
sync; echo 3>/proc/sys/vm/drop_caches
```

runcpu command invoked through numactl i.e.:

```
numactl --interleave=all runcpu <etc>
```

jemalloc: configured and built at default for 32bit (i686) and 64bit (x86_64) targets;

jemalloc: built with the RedHat Enterprise 7.4, and the system compiler gcc 4.8.5;

jemalloc: sources available from jemalloc.net or

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei CH121 V5 (Intel Xeon Silver 4116)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECrate2017_int_base =</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak =</td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Date:</th>
<th>Dec-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Availability:</td>
<td>Jul-2017</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Sep-2017</td>
</tr>
</tbody>
</table>

General Notes (Continued)

No: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
No: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
No: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

This benchmark result is intended to provide perspective on past performance using the historical hardware and/or software described on this result page.

The system as described on this result page was formerly generally available. At the time of this publication, it may not be shipping, and/or may not be supported, and/or may fail to meet other tests of General Availability described in the SPEC OSG Policy document, http://www.spec.org/osg/policy.html

This measured result may not be representative of the result that would be measured were this benchmark run with hardware and software available as of the publication date.

Platform Notes

BIOS configuration:
- Power Policy Set to Performance
- SNC Set to Enabled
- IMC Interleaving Set to 1-way Interleave
- XPT Prefetch Set to Enabled
- Sysinfo program /spec2017/bin/sysinfo
 Rev: r5797 of 2017-06-14 96c45e45a6ad54c135fd618bcc091c0f
 running on localhost.localdomain Thu Dec 28 19:20:00 2017

SUT (System Under Test) info as seen by some common utilities. For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

```
model name : Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
  2 "physical id"s (chips)
  48 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
  cpu cores : 12
  siblings : 24
```

(Continued on next page)
Huawei

Huawei CH121 V5 (Intel Xeon Silver 4116)

SPECrate2017_int_base = 110

SPECrate2017_int_peak = 117

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Dec-2017
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Platform Notes (Continued)

physical 0: cores 0 1 2 3 4 5 8 9 10 11 12 13
physical 1: cores 0 1 2 3 4 5 8 9 10 11 12 13

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
Stepping: 4
CPU MHz: 2100.000
BogoMIPS: 4204.75
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 16896K
NUMA node0 CPU(s): 0-2,6-8,24-26,30-32
NUMA node1 CPU(s): 3-5,9-11,27-29,33-35
NUMA node2 CPU(s): 12-13,18-20,36-38,42-44
NUMA node3 CPU(s): 15-17,21-23,39-41,45-47

/proc/cpuinfo cache data
 cache size : 16896 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 6 7 8 24 25 26 30 31 32
node 0 size: 96405 MB
node 0 free: 93464 MB
node 1 cpus: 3 4 5 9 10 11 27 28 29 33 34 35
node 1 size: 98304 MB
node 1 free: 95644 MB
node 2 cpus: 12 13 14 18 19 20 36 37 38 42 43 44
node 2 size: 98304 MB
node 2 free: 95207 MB
node 3 cpus: 15 16 17 21 22 23 39 40 41 45 46 47
node 3 size: 98304 MB

(Continued on next page)
Huawei

Huawei CH121 V5 (Intel Xeon Silver 4116)

SPECrate2017_int_base = 110
SPECrate2017_int_peak = 117

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Dec-2017
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Platform Notes (Continued)

node 3 free: 95628 MB
node distances:
 node 0 1 2 3
 0: 10 11 21 21
 1: 11 10 21 21
 2: 21 21 10 11
 3: 21 21 11 10

From /proc/meminfo
 MemTotal: 394144696 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 os-release:
 NAME="Red Hat Enterprise Linux Server"
 VERSION="7.3 (Maipo)"
 ID="rhel"
 ID_LIKE="fedora"
 VERSION_ID="7.3"
 PRETTY_NAME="Red Hat Enterprise Linux Server 7.3 (Maipo)"
 ANSI_COLOR="0;31"
 CPE_NAME="cpe:/o:redhat:enterprise_linux:7.3:GA:server"
 redhat-release: Red Hat Enterprise Linux Server release 7.3 (Maipo)
 system-release: Red Hat Enterprise Linux Server release 7.3 (Maipo)

uname -a:
 Linux localhost.localdomain 3.10.0-514.el7.x86_64 #1 SMP Wed Oct 19 11:24:13 EDT 2016
 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Dec 27 21:00

SPEC is set to: /spec2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/sda2 xfs 781G 229G 553G 30% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret
this section. The 'dmidecode' program reads system data which is "intended to allow
hardware to be accurately determined", but the intent may not be met, as there are
frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
 BIOS INSYDE Corp. 0.31 09/29/2017
 Memory:
 24x Samsung M393A2K43BB1-CTD 16 GB 2 rank 2666, configured at 2400

(End of data from sysinfo program)
Huawei

Huawei CH121 V5 (Intel Xeon Silver 4116)

SPEC CPU2017 Integer Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei CH121 V5 (Intel Xeon Silver 4116)

SPECrater2017_int_base = 110

SPECrater2017_int_peak = 117

CPU2017 License: 3175

Test Sponsor: Huawei

Tested by: Huawei

Test Date: Dec-2017

Hardware Availability: Jul-2017

Software Availability: Sep-2017

Compiler Version Notes

==

CC 500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base, peak)
 525.x264_r(base, peak) 557.xz_r(base, peak)

icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

CC 500.perlbench_r(peak) 502.gcc_r(peak)

icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==

CXXC 520.omnetpp_r(base) 523.xalancbmk_r(base) 531.deepsjeng_r(base)
 541.leela_r(base)

icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==

CXXC 520.omnetpp_r(peak) 523.xalancbmk_r(peak) 531.deepsjeng_r(peak)
 541.leela_r(peak)

icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==

FC 548.exchange2_r(base, peak)

ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:

icc

C++ benchmarks:

icpc

(Continued on next page)
SPEC CPU2017 Integer Rate Result

<table>
<thead>
<tr>
<th>Huawei CH121 V5 (Intel Xeon Silver 4116)</th>
<th>SPECrate2017_int_base = 110</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPECrate2017_int_peak = 117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License: 3175</th>
<th>Test Date: Dec-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Sep-2017</td>
</tr>
</tbody>
</table>

Base Compiler Invocation (Continued)

Fortran benchmarks:

ifort

Base Portability Flags

- 500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
- 502.gcc_r: -DSPEC_LP64
- 505.mcf_r: -DSPEC_LP64
- 520.omnetpp_r: -DSPEC_LP64
- 523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
- 525.x264_r: -DSPEC_LP64
- 531.deepsjeng_r: -DSPEC_LP64
- 541.leela_r: -DSPEC_LP64
- 548.exchange2_r: -DSPEC_LP64
- 557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:

- -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
- -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

C++ benchmarks:

- -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
- -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:

- -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
- -qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte
- -L/usr/local/je5.0.1-64/lib -ljemalloc

Base Other Flags

C benchmarks:

- -m64 -std=c11

C++ benchmarks:

- -m64

(Continued on next page)
SPEC CPU2017 Integer Rate Result

<table>
<thead>
<tr>
<th>Huawei CH121 V5 (Intel Xeon Silver 4116)</th>
<th>SPECrate2017_int_base = 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak = 117</td>
<td></td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Sep-2017
Test Date: Dec-2017

Base Other Flags (Continued)

- Fortran benchmarks:
 - `-m64`

Peak Compiler Invocation

- **C benchmarks:** `icc`
- **C++ benchmarks:** `icpc`
- Fortran benchmarks: `ifort`

Peak Portability Flags

- `500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64`
- `502.gcc_r: -D_FILE_OFFSET_BITS=64`
- `505.mcf_r: -DSPEC_LP64`
- `520.omnetpp_r: -DSPEC_LP64`
- `523.xalancbmk_r: -D_FILE_OFFSET_BITS=64 -DSPEC_LINUX`
- `525.x264_r: -DSPEC_LP64`
- `531.deepsjeng_r: -DSPEC_LP64`
- `541.leela_r: -DSPEC_LP64`
- `548.exchange2_r: -DSPEC_LP64`
- `557.xz_r: -DSPEC_LP64`

Peak Optimization Flags

- **C benchmarks:**
 - `500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo`
 - `-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3`
 - `-fno-strict-overflow -L/usr/local/je5.0.1-64/lib`
 - `-ljemalloc`
 - `502.gcc_r: -L/opt/intel/compilers_and_libraries_2018/linux/lib/ia32`
 - `-Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo`
 - `-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3`
 - `-L/usr/local/je5.0.1-32/lib`
 - `-ljemalloc`

(Continued on next page)
<table>
<thead>
<tr>
<th>SPEC CPU2017 Integer Rate Result</th>
<th>Huawei CH121 V5 (Intel Xeon Silver 4116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_base = 110</td>
<td>SPECrate2017_int_peak = 117</td>
</tr>
<tr>
<td>CPU2017 License: 3175</td>
<td>Test Date: Dec-2017</td>
</tr>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Sep-2017</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

505.mcf_r: basepeak = yes

525.x264_r: -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=3 -fno-alias -L/usr/local/je5.0.1-64/lib -ljemalloc

557.xz_r: basepeak = yes

C++ benchmarks:

520.omnetpp_r: basepeak = yes

523.xalancbmk_r: -L/opt/intel/compilers_and_libraries_2018/linux/lib/ia32 -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: basepeak = yes

541.leela_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:

-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte -L/usr/local/je5.0.1-64/lib -ljemalloc

Peak Other Flags

C benchmarks (except as noted below):

-m64 -std=c11

502.gcc_r: -m32 -std=c11

C++ benchmarks (except as noted below):

-m64

523.xalancbmk_r: -m32

Fortran benchmarks:

-m64
Huawei

Huawei CH121 V5 (Intel Xeon Silver 4116)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak</td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Dec-2017</td>
</tr>
<tr>
<td>Hardware Availability:</td>
<td>Jul-2017</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Sep-2017</td>
</tr>
</tbody>
</table>

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.8.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2017-12-28 19:19:59-0500.
Originally published on 2018-02-27.