Huawei

Huawei RH2288H V2 (Intel Xeon E5-2680 V2)

Hardware

CPU Name: Intel Xeon E5-2680 v2
CPU Characteristics: Intel Turbo Boost Technology up to 3.60 GHz
CPU MHz: 2800
FPU: Integrated
CPU(s) enabled: 20 cores, 2 chips, 10 cores/chip, 2 threads/core
CPU(s) orderable: 1.2 chips
Primary Cache: 32 KB I + 32 KB D on chip per core
Secondary Cache: 256 KB I+D on chip per core
L3 Cache: 25 MB I+D on chip per chip
Other Cache: None
Memory: 256 GB (16 x 16 GB 2Rx4 PC3-14900R-13 ,ECC)
Disk Subsystem: 1 x 300 GB SAS,10K RPM
Other Hardware: None

Software

Operating System: Red Hat Enterprise Linux Server release 6.5 (Santiago)
Compiler: C/C++: Version 14.0.0.080 of Intel C++ Studio XE for Linux
Auto Parallel: No
File System: ext4
System State: Run level 3 (multi-user)
Base Pointers: 32-bit
Peak Pointers: 32/64-bit
Other Software: Microquill SmartHeap V10.0
Huawei RH2288H V2 (Intel Xeon E5-2680 V2)

SPECint_rate2006 = 858
SPECint_rate_base2006 = 830

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.perlbench</td>
<td>40</td>
<td>613</td>
<td>511</td>
<td>611</td>
<td>637</td>
<td>614</td>
<td>637</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>40</td>
<td>857</td>
<td>841</td>
<td>451</td>
<td>459</td>
<td>840</td>
<td>459</td>
</tr>
<tr>
<td>403.mcf</td>
<td>40</td>
<td>499</td>
<td>499</td>
<td>646</td>
<td>646</td>
<td>502</td>
<td>642</td>
</tr>
<tr>
<td>429.mcf</td>
<td>40</td>
<td>299</td>
<td>299</td>
<td>1220</td>
<td>1220</td>
<td>300</td>
<td>1220</td>
</tr>
<tr>
<td>445.gobmk</td>
<td>40</td>
<td>665</td>
<td>649</td>
<td>631</td>
<td>646</td>
<td>649</td>
<td>631</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>40</td>
<td>328</td>
<td>302</td>
<td>1140</td>
<td>1230</td>
<td>327</td>
<td>1140</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>40</td>
<td>773</td>
<td>734</td>
<td>626</td>
<td>646</td>
<td>777</td>
<td>623</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>40</td>
<td>148</td>
<td>148</td>
<td>5590</td>
<td>5600</td>
<td>148</td>
<td>5600</td>
</tr>
<tr>
<td>464.h264ref</td>
<td>40</td>
<td>832</td>
<td>819</td>
<td>1060</td>
<td>1080</td>
<td>831</td>
<td>1070</td>
</tr>
<tr>
<td>471.omnetpp</td>
<td>40</td>
<td>575</td>
<td>547</td>
<td>435</td>
<td>457</td>
<td>575</td>
<td>435</td>
</tr>
<tr>
<td>473.astar</td>
<td>40</td>
<td>602</td>
<td>602</td>
<td>466</td>
<td>467</td>
<td>601</td>
<td>467</td>
</tr>
<tr>
<td>483.xalancbmk</td>
<td>40</td>
<td>315</td>
<td>315</td>
<td>876</td>
<td>875</td>
<td>316</td>
<td>874</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

Platform Notes

Sysinfo program /spec/config/sysinfo.rev6818
$Rev: 6818 $ $Date:: 2012-07-17 #$ e86d102572650a6e4d596a3cee98f191
running on localhost Tue Apr 15 11:29:28 2014

This section contains SUT (System Under Test) info as seen by some common utilities. To remove or add to this section, see:
http://www.spec.org/cpu2006/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) CPU E5-2680 V2 @ 2.80GHz
2 "physical id"s (chips)
40 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 10
siblings : 20

Continued on next page
Huawei

Huawei RH2288H V2 (Intel Xeon E5-2680 V2)

SPECint_rate2006 = 858
SPECint_rate_base2006 = 830

CPU2006 license: i3
Test sponsor: Huawei
Tested by: Huawei

Platform Notes (Continued)

physical 0: cores 0 1 2 3 4 8 9 10 11 12
physical 1: cores 0 1 2 3 4 8 9 10 11 12
cache size : 25600 KB

From /proc/meminfo
MemTotal: 264478184 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

/usr/bin/lsb_release -d
Red Hat Enterprise Linux Server release 6.5 (Santiago)

From /etc/*release*/etc/*version*
redhat-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)
system-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)

uname -a:
Linux localhost 2.6.32-431.el6.x86_64 #1 SMP Sun Nov 10 22:19:54 EST 2013
x86_64 x86_64 x86_64 GNU/Linux
run-level 3 Apr 14 17:11

SPEC is set to: /spec

Filesystem Type Size Used Avail Use% Mounted on
/dev/sda2 ext4 272G 9.8G 248G 4% /

Additional information from dmidecode:
BIOS Insyde Corp. RMIBV629 05/12/2014
Memory:
13x Hynix HMT42GR7AFR4C-RD 16 GB 1866 MHz 2 rank
8x NO DIMM NO DIMM
3x Samsung M393B2G70DB0-CMA 16 GB 1866 MHz 2 rank

(End of data from sysinfo program)

General Notes

Environment variables set by runspec before the start of the run:
LD_LIBRARY_PATH = "/spec/libs/32:/spec/libs/64:/spec/sh"

Binaries compiled on a system with 1x Core i7-860 CPU + 8GB
memory using RedHat EL 6.4
Transparent Huge Pages enabled with:
echo always > /sys/kernel/mm/redhat_transparent_hugepage/enabled
Filesystem page cache cleared with:
echo 1 > /proc/sys/vm/drop_caches
runspec command invoked through numactl i.e.:
umactl --interleave=all runspec <etc>

The Huawei RH2288H v2 and Huawei RH2288 v2 and the Huawei RH1288 v2 models
Continued on next page
Huawei RH2288H V2 (Intel Xeon E5-2680 V2)

SPECint_rate2006 = 858
SPECint_rate_base2006 = 830

CPU2006 license: 13
Test sponsor: Huawei
Test date: Apr-2014
Tested by: Huawei
Hardware Availability: Sep-2013
Software Availability: Nov-2013

General Notes (Continued)
are electronically equivalent, and the results have been measured on a Huawei RH2288H v2 model.

Base Compiler Invocation

C benchmarks:
icc -m32

C++ benchmarks:
icpc -m32

Base Portability Flags

400.perlbench: -DSPEC_CPU_LINUX_IA32
462.libquantum: -DSPEC_CPU_LINUX
483.xalancbmk: -DSPEC_CPU_LINUX

Base Optimization Flags

C benchmarks:
-xsse4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3

C++ benchmarks:
-xsse4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3
-Wl,-z,muldefs -L/sh -lsmartheap

Base Other Flags

C benchmarks:
403.gcc: -Dalloca=_alloca

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m32

400.perlbench: icc -m64
401.bzip2: icc -m64

Continued on next page
Huawei RH2288H V2 (Intel Xeon E5-2680 V2)

SPECint_rate2006 = 858
SPECint_rate_base2006 = 830

CPU2006 license: 13
Test sponsor: Huawei
Tested by: Huawei

Test date: Apr-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

Peak Compiler Invocation (Continued)

456.hmmer: icc -m64
458.sjeng: icc -m64

C++ benchmarks:
icpc -m32

Peak Portability Flags

400.perlbench: -DSPEC_CPU_LP64 -DSPEC_CPU_LINUX_X64
401.bzip2: -DSPEC_CPU_LP64
456.hmmer: -DSPEC_CPU_LP64
458.sjeng: -DSPEC_CPU_LP64
462.libquantum: -DSPEC_CPU_LINUX
483.xalancbmk: -DSPEC_CPU_LINUX

Peak Optimization Flags

C benchmarks:

400.perlbench: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -auto-ilp32

401.bzip2: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -opt-prefetch -auto-ilp32 -ansi-alias

403.gcc: basepeak = yes
429.mcf: basepeak = yes
445.gobmk: -xSSE4.2(pass 2) -prof-gen(pass 1) -prof-use(pass 2) -ansi-alias -opt-mem-layout-trans=3
456.hmmer: -xSSE4.2 -ipo -O3 -no-prec-div -unroll2 -auto-ilp32
458.sjeng: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -unroll4 -auto-ilp32
462.libquantum: basepeak = yes
464.h264ref: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -unroll2 -ansi-alias

Continued on next page
Huawei

Huawei RH2288H V2 (Intel Xeon E5-2680 V2)

<table>
<thead>
<tr>
<th>SPECint_rate2006</th>
<th>858</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECint_rate_base2006</td>
<td>830</td>
</tr>
</tbody>
</table>

CPU2006 license: 13
Test date: Apr-2014

Test sponsor: Huawei
Hardware Availability: Sep-2013

Tested by: Huawei
Software Availability: Nov-2013

Peak Optimization Flags (Continued)

C++ benchmarks:

- 471.omnetpp:
 -xSSE4.2(pass 2)
 -prof-gen(pass 1)
 -ipo(pass 2)
 -O3(pass 2)
 -no-prec-div(pass 2)
 -prof-use(pass 2)
 -ansi-alias
 -opt-ra-region-strategy=block
 -Wl,-z,muldefs
 -L/sh -lsmartheap

- 473.astar: basepeak = yes

- 483.xalancbmk: basepeak = yes

Peak Other Flags

C benchmarks:

- 403.gcc:
 -Dalloca=_alloca

The flags files that were used to format this result can be browsed at:

http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.html

You can also download the XML flags sources by saving the following links:

http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.xml

http://www.spec.org/cpu2006/flags/Huawei-Platform-Settings-V1.0-IVB-RevG.xml

SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester.

For other inquiries, please contact webmaster@spec.org.

Tested with SPEC CPU2006 v1.2.

Report generated on Fri Jul 25 00:00:02 2014 by SPEC CPU2006 PS/PDF formatter v6932.

Originally published on 4 June 2014.