
Evaluating the correspondence between training and reference workloads in
SPEC CPU2006

Darryl Gove & Lawrence Spracklen
Systems Group

Sun Microsystems Inc., Sunnyvale, CA�
darryl.gove,lawrence.spracklen�@sun.com

Abstract

Profile feedback (sometimes called Feedback Directed
Optimisation FDO) is a useful technique for providing the
compiler with additional information about runtime pro-
gram flow. The compiler is able to use this information to
make optimisation decisions that improve the way the code
is laid out in memory or determine which routines are in-
lined, and hence improve the performance of the applica-
tion.

The use of profile feedback requires the code to be com-
piled twice. The first time the compiler generates an in-
strumented version of the application. This instrumented
version is then run on one or more ’representative’ train-
ing workloads to gather profile data. This profile data con-
tains information such as how many times each routine is
executed and how frequently each branch is taken. The sec-
ond pass through the compiler uses this information to make
more enlighted optimisation decisions.

The quality of the training data impacts the ability of
the compiler to do the best job that it can. This pa-
per discusses a method of assessing the similarity of the
training workload to the reference workload, and applies
this methodology to evaluate the training workloads in the
SPEC CPU2006 benchmark suite.

1 Introduction

When an application is built, the compiler has to make
the best guess that it can as to what the most frequently
occurring path through the code will be. This guess will
impact how branch statements are laid out, which routines
are worth inlining, and even low level details such as which
variables are held in registers and which are spilled to mem-
ory. Given the complexity of decisions to be made, the com-
piler is unlikely to guess correctly in all cases. The cost of
making the wrong decision is often a missed opportunity to

make the application run faster, the sum of these missed op-
portunities can be a significant loss of runtime performance.

One way to help the compiler make the correct decision
is to use profile feedback. The idea here is to build an in-
strumented version of the application, run this instrumented
version on a training workload, then use the data that is col-
lected to build a final version of the application. The in-
strumentation typically gathers data on which branches are
usually taken and which routines are frequently called. Us-
ing this information, the compiler can make very good de-
cisions about how to lay out the basic blocks, and which
routines should be inlined. However, the quality of the de-
cisions is determined by the correspondence between the
training workload and the actual (’reference’) workload
which is the real use for the application.

There are many different attributes that could be col-
lected under profile feedback. For example, an application
could be profiled to determine where the cache misses oc-
cur. However, many of these are very dependent on the
actual implementation of the hardware. Cache miss be-
haviour, for example, is largely determined by the attributes
of the cache hierarchy. Even the runtime of the applica-
tion when built with different training workloads does not
guarantee that the workload that produces the fastest final
runtime on one platform is the best training workload for
all platforms. The metrics proposed in this paper focus on
program flow which is approximately architecture neutral.
Even program flow is not perfectly platform independent
since it can be altered by architecture dependent factors
such as floating point rounding, predicated execution, and
library implementation.

The recently released SPEC CPU2006 benchmark
suite [1] includes training workloads for profile feedback.
A change from the older CPU2000 suite is that profile feed-
back can only be used under peak runs of the suite. As part
of the development of the SPEC CPU2006 benchmark suite,
the training workloads were evaluated using the methodol-
ogy proposed in [2]. The objective was not necessarily to
provide perfect training data in all cases, but to ensure that

the training data was reasonable. There is a relatively com-
pelling argument that in developing a benchmark suite, the
objective is not to exclude all traces of real world imperfec-
tions.

2 Measuring the quality of the training work-
load

This section describes the methodology used in evaluat-
ing whether or not the training workload is representative of
the reference workload. The methodology used is covered
in detail in [2], and the implementation is covered in more
detail in [3].

The binaries for all of the benchmarks were instrumented
using BIT [4]. This instrumentation gathered counts for
the number of times each branch instruction was taken and
untaken, and counts for the number of times each ’basic
block’ (a basic block of code is a small chunk of assem-
bly language code with one entry point and one, or more,
exit points) of code was executed. The count data was col-
lected for both branches and basic blocks for all the ref-
erence and training workloads. For benchmarks (such as
400.perlbench) where there are multiple training and ref-
erence workloads, the counts were aggregated over all the
training and all the reference runs.

There are two metrics that are relatively simple to calcu-
late, and also have an intuitive meaning:

� Coverage. The coverage reflects the number of basic
blocks in the code that are used by the reference work-
load that are also used by the training workload.

� Branch correspondence. The correspondence indicates
the proportion of branch instructions where both the
training and reference workloads behave the same way.
For example, the branch is usually taken by both the
training and reference workloads.

The coverage is important because the compiler gains no
useful information from a block of code that is not exercised
by the training workload. In fact the compiler gets the neg-
ative information that the block of code is not executed, and
therefore may not be worth optimising at all.

The coverage is calculated using the following proce-
dure. The number of times each basic block is executed by
the reference workload is summed up for those basic blocks
which are also executed by the training workload. This is
expressed as a proportion of the sum of the execution counts
for all the basic blocks executed by the reference workload.
The coverage of a program can be expressed using equa-
tion 1. Let� � ���� denote the number of times that basic
block 	 is executed during the reference workload. Simi-
larly � �
��	� � denotes the number of times that the basic
block is executed during the training workload.

�� ���� � �

�
��

��
�

� � ����� � �
��	� �� � �
� otherwise�

�� � � ����� (1)

The formula for coverage, expressed as a percentage, is a
value between zero and 100%. If all the basic blocks that are
used by the reference workload are also used by the train-
ing workload, then the value for coverage will be 100%. If
none of the blocks used by the reference workload are exe-
cuted by the training workload, the value for coverage will
be zero. The weighting of each basic block by the execu-
tion count in the reference workload means that a value for
coverage of nearly 100% can be obtained even when the
training workload does not executeall of the basic blocks
used by the reference workload.

The correspondence value is calculated by summing the
execution count for every branch under the reference work-
load for all the branches where the branch is either usually
taken for both the training and reference workloads, or usu-
ally untaken for both the training and reference workloads.
This is then reported as a proportion of the total execution
count for all branches in the reference workload.

The branch correspondence value can be expressed as
equation 2. Let� � ���� represent the number of times that
branch statement� is encountered over the run of the ap-
plication. Let� ���� be one if the branch is usually taken
during the reference run, and zero otherwise. Let�
��	� �
be one if the branch is usually taken during the training
run, and zero otherwise. Let� � denote the correspondence
value for this particular application.

� � �

�
�

��
�

� � ���� � ���� � �
��	� �
� otherwise�

� �� ���� (2)

The correspondence value, expressed as a percentage, is
a value between zero and 100%. A value of zero means that
all the branches that are usually taken in the reference work-
load are usually untaken in the training workload (and visa
versa). A value of 100% indicates that all the branches that
are usually taken in the reference workload are also usually
taken by the training workload (and visa versa). The cor-
respondence value is weighted by the number of times that
the branch is encountered during the reference run, conse-
quently a value of nearly 100% can be obtained so long as
the behaviour of each frequently encountered branch agrees
in the training and reference workloads.

3 Graphing coverage and correspondence

The values obtained for coverage and correspondence
are helpful in determining if there is an issue, but they do
not provide insight into what the issue is. This section dis-
cusses how to present both coverage and correspondence in
a graphical format. This format makes it easier to identify
whether the poor result is due to a few significant points of
difference, a multitude of smaller differences, or a border-
line change in the behaviour (for example where a branch is
taken about 50% of the time).

For both coverage and correspondence values, the graphs
are x-y plots, the size of the marker is proportional to the
frequency of execution of the basic block (or branch) as
a proportion of the execution frequency for the most fre-
quently executed block (or branch). The most frequently
executed blocks will have the largest markers. The marker
size for the infrequently executed blocks has been artifi-
cially increased to render them visible.

To show the coverage information, the basic blocks are
sorted in increasing order of execution frequency. These are
then plotted on a scale that runs from zero to one; the most
frequently executed basic block being assigned the value 1,
the least frequently the value 0. The basic blocks in the
reference workload are plotted along the x-axis and the ba-
sic blocks for the training workload on the y-axis. A result
of this is that blocks which are frequently executed in both
the training and reference workloads appear at the top right
of the graph. It is these frequently executed basic blocks
that give the graph a shape reminiscent of a ’popsicle’. Fre-
quently executed basic blocks which are not covered by the
training workload will be shown by large markers plotted on
the x-axis. Hence deviation from the ’popsicle’ shape indi-
cates a mismatch between the training and reference work-
loads.

Branch correspondence can be plotted using the proba-
bility of the branch being taken by the reference dataset as
the value for the x-axis, and the probability of being taken
in the training workload on the y-axis. Branches that get
plotted in the upper right quadrant are those that are usually
taken in both the training and reference workloads - these
branches are well trained. Similarly branches that appear
in the lower left quadrant are ones that are usually untaken
by both the training and reference workloads. The branches
that appear in either the upper left or lower right quadrant
are those that are mistrained.

4 Results

Table 1 shows the results of applying these formula to
the Integer benchmarks in SPEC CPU2006. 483.xalancbmk
and 464.h264ref both score low on coverage of the criti-
cal parts of the code. 483.xalancbmk also scores low cor-

Integer Coverage Correspondance
benchmarks value
400.perlbench 99% 98%
401.bzip2 100% 100%
403.gcc 97% 96%
429.mcf 100% 99%
445.gobmk 100% 99%
456.hmmer 99% 100%
458.sjeng 100% 97%
462.libquantum 100% 100%
464.h264ref 92% 97%
471.omnetpp 100% 95%
473.astar 100% 100%
483.xalancbmk 88% 91%

Table 1. Results for Integer benchmarks in
CPU2006

respondence for the branch behaviour. 483.xalancbmk is
an XML parser, so it might be expected that the branches
behave differently under different workloads, however it is
unexpected that the training workload does not cover all the
code that is executed by the reference workload. Similarly
the training workload for 464.h264ref does not cover all the
code that is critical for the reference workload. The cov-
erage graph for 464.h264ref is shown in Figure 1. From
inspecting the graph it is apparent that the low value for
coverage comes from a number of smaller routines which
are not executed during the training workload.

The chess benchmark, 458.sjeng, also has poor branch
correspondence, this is shown in Figure 2. As might be ex-
pected for a game playing benchmark, this is the result of
many unpredictable branches rather than one or two mis-
predicted branches.

Table 2 shows the results of applying these formula to the
Floating Point benchmarks in SPEC CPU2006. The bench-
mark 416.gamess has poor coverage, this is shown in Fig-
ure 3. It is apparent from the graph that, for this benchmark,
several key routines are not exercised by the training work-
load. The branch correspondence for this benchmark is also
low. This is shown in Figure 4. Most of the branches are in
either the upper right or lower left quadrants, but there are
two significant branches that appear in the other quadrants,
and the most significant branch is taken about 50% of the
time in both training and reference workloads.

From the graph of the coverage for 481.wrf, shown in
Figure 5, it is apparent that the reason for its low coverage
score is that several significant routines are not executed by
the training workload.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
lo

ck
 o

rd
er

 (
tr

ai
n)

Block order (ref)

Plot of basic block coverage

Frequency block executed in reference workload

Figure 1. Basic block coverage for 464.h264ref

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
ro

ba
bi

lit
y

ta
ke

n
(t

ra
in

)

Probability taken (ref)

Plot of branch taken probability in training and reference workloads

Frequency branch encountered in reference workload

Figure 2. Branch correspondence data for 458.sjeng

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
lo

ck
 o

rd
er

 (
tr

ai
n)

Block order (ref)

Plot of basic block coverage

Frequency block executed in reference workload

Figure 3. Basic block coverage for 416.gamess

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

P
ro

ba
bi

lit
y

ta
ke

n
(t

ra
in

)

Probability taken (ref)

Plot of branch taken probability in training and reference workloads

Frequency branch encountered in reference workload

Figure 4. Branch correspondence data for 416.gamess

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

B
lo

ck
 o

rd
er

 (
tr

ai
n)

Block order (ref)

Plot of basic block coverage

Frequency block executed in reference workload

Figure 5. Basic block coverage for 481.wrf

5 Examining 481.wrf in more detail

The benchmark 481.wrf scores very poorly on both cov-
erage and correspondence metrics. Given the low coverage
score, it is not surprising that the correspondence is simi-
larly low, since the training workload cannot correctly train
those branches that it does not encounter. It is possible to
generate profiles showing execution counts for each assem-
bly language instruction for both the training and reference
workloads. These instruction level counts can be aggre-
gated to both instructions executed for each line of source,
and instructions executed for each routine.

It would be possible for the reference and training in-
struction count profiles for the benchmark to look very sim-
ilar when aggregated at the function level if, as an exam-
ple, the difference in basic block coverage was due to an
if condition being true for the training run and false for the
reference run.

The instruction count profile of 481.wrf (number of in-
structions executed in each routine as a percentage of the
total instructions) is shown for the top 17 routines in Ta-
ble 3. Of the first 17 routines two routines are not present
in the profile from the training workload. These routines
areclphyld andsint . Examining the call stacks for these
two routines shows that the routinesint is called from
the routinemednestinitial which is also not called in
the training workload, andclphyld is called by micro-
physicsdriver. However,microphysicsdriver is called by
the training workload. Examining the program flow in

themicrophysicsdriver routine it is apparent that different
’schemes’ are used by the training and reference workloads.
In the training workload the schemeWSM3is used, whereas
the reference workload uses theLin scheme.

In this situation it is apparent that the training workload
needs to be improved to cover more of the code used by the
reference workload. One approach would be to remove the
existing training workload, and replace it with a new variant
which does exercise the appropriate routines. However, the
current training workload is, presumably, representativeof
some other real workload. Consequently a better approach
would be to add another training workload to exercise those
routines used in the reference workload. The advantage of
doing this would be that the training workloads would train
for a wider-range of uses of the application, rather than just
the single use that happens to have been picked for the ref-
erence workload.

6 Related Work

In [2], the analysis technique discussed in this paper is
applied to SPEC CPU2000. Our paper builds on this re-
search by applying the same techniques to the recently re-
leased SPEC CPU2006 suite.

In addition, to the techniques discussed in [2], there has
been significant research focussed on feedback profile op-
timizations and workloads. This work can be viewed as
three broad categories: firstly, the effectiveness of the train-
ing profile is investigated by examining the resulting per-

Floating point Coverage Correspondance
benchmarks value
410.bwaves 100% 100%
416.gamess 73% 86%
433.milc 100% 100%
434.zeusmp 100% 100%
435.gromacs 100% 100%
436.cactusADM 100% 100%
437.leslie3d 98% 95%
444.namd 100% 100%
447.dealII 100% 100%
450.soplex 100% 99%
453.povray 100% 100%
454.calculix 89% 99%
459.GemsFDTD 100% 88%
465.tonto 100% 100%
470.lbm 100% 100%
481.wrf 67% 93%
482.sphinx3 100% 98%

Table 2. Results for the Floating Point bench-
marks in CPU2006

formance benefits [5] and the problems that can be caused
when the functions are used in different ways by different
workloads [6]. Secondly, research has been conducted into
calculating the potential benefits of profile feedback for dif-
ferent applications [7]. Finally, there has been workload
characterization, primarily to reduce the simulation space
for processor design [8, 9, 10].

7 Conclusions

The methodology proposed in this paper enables the de-
veloper to make informed decisions about the quality of
the training workload, and to improve the training work-
load as necessary. Unfortunately, there is the concern that
many users will use imperfect training data when building
their application. Hence the inclusion in the CPU2006 suite
codes where the training data is less than perfect; some
training workloads do not cover all of the code executed by
the reference workload, and the branch behaviour for some
training workloads is noticeably different from that of the
reference workload.

Possibly as a result of the attention paid to selecting ap-
propriate training workloads, there appear to be no bench-
marks where the training workload is a very poor match for
the reference workload. This can be contrasted with the sit-
uation for CPU2000 in which the benchmark 301.apsi has
a very poor training workload that both misses critical ba-
sic blocks (it has a coverage of only 37%), and also has
very different branch behaviour (the branch correspondence

%total %total
Routine name instruction instruction

count ref count train
advectscalar 26.64% 14.21%
wsm32d None 13.91%
advanceuv 6.96% 6.49%
rtrn 1.34% 5.95%
advancew 6.18% 5.73%
advancemu t 4.34% 4.04%
advectw 4.23% 3.95%
advectv 4.04% 3.76%
advectu 4.03% 3.75%
calc cq 3.28% 2.32%
ysu2d 2.94% 3.14%
clphy1d 2.73% None
rk updatescalar 2.71% 1.31%
curvature 2.24% 2.15%
horizontalpressuregradient 2.23% 2.13%
sint 2.18% None
calc p rho 2.18% 2.08%

Table 3. Instruction count profile for 481.wrf

value for the benchmark is 72%) [2].
In contrast, the benchmarks with the worst cover-

age values in CPU2006 are 481.wrf with 67%, and
416.gamess with 73%. As for branch correspondence val-
ues, 416.gamess also scores lowest with 86%.

A further observation is that relatively few of the work-
loads in CPU2006 needed to have their training data ad-
justed as the result of this analysis. One cautious conclu-
sion that may be drawn from this is that for most of the ap-
plications in CPU2000 and CPU2006 the behaviour of the
branches and the coverage of the code is largely the same re-
gardless of the workload run. In essence, branch behaviour
for the most frequently executed branches in an application,
is largely independent of the workload that the application
is running.

References

[1] “SPEC CPU2006 Benchmark Suite,”http://www.spec.org/
cpu2006/.

[2] D. Gove and L. Spracklen, “Evaluating Whether the Training Data
Provided for Profile Feedback is a Realistic Control Flow forthe Real
Workload,” in Proc. SPEC Benchmark Workshophttp://www.
spec.org/workshops/2006/.

[3] D. Gove, “Selecting Representative Training Workloadsfor
Profile Feedback Through Coverage and Branch Analysis,”
http://developers.sun.com/sunstudio/articles/
coverage.html.

[4] “Cool Tools - Binary Improvement Tool (BIT),” http://
cooltools.sunsource.net/bit/.

[5] G. Langdale and T. Gross, “Evaluating the Relationship Between
the Usefulness and Accuracy of Profiles,” inProc. Workshop on
Duplicating, Deconstructing, and Debunking, 2003.

[6] S. McFarling, “Reality-based optimization,” inProc. Intl. Symp. on
Code generation and optimization, 2003, pp. 59–68.

[7] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch
directions from previous runs of a program,” inProc. Intl. Conf.
on Architectural support for programming languages and operating
systems, 1992, pp. 85–95.

[8] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, “Measur-
ing Program Similarity: Experiments with SPEC CPU Benchmark
Suites,” inProc. Intl. Symp. Performance Analysis of Systems and
Software, 2005.

[9] W. Hsu, H. Chen, P. Yew, and D. Chen, “On the Predictability of
Program Behavior Using Different Input Data Sets,” inProc. Work-
shop of Interaction between Compilers and Computer Architectures,
2002.

[10] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload
Design: Selecting Representative Program-Input Pairs,” in Proc. Intl.
Conf. on Parallel Architectures and Compilation Techniques, 2002,
pp. 83–94.

