Hewlett-Packard Company
AlphaServer ES47 7/1000

SPECFp_rate2000 = 29.6
SPECFp_rate_base2000 = 22.4

Baseline C: cc -arch ev7 -fast -O4 ONESTEP
 Fortran: f90 -arch ev7 -fast -O5 ONESTEP

Peak:
 All use -arch ev7 -non_shared ONESTEP
except these (which use only the tunings shown below):
 173.applu 188.ammp 191.fma3d

Individual benchmark tuning:
168.wupwise: kf77 -call_shared -inline all -tune ev67
 -unroll 12 -automatic -align commons -arch ev67
 -fkapargs=' -aggressive=c -fuse
 -fuselvel=1 -so=2 -r=1 -o=1 -interleave
 -ur=6 -ur2=060 ' +PFB
171.swim: same as base
172.mgrid: kf90 -call_shared -arch generic -O5 -inline

Hardware
CPU: Alpha 21364
CPU MHz: 1000
FPU: Integrated
CPU(s) enabled: 2 cores, 2 chips, 1 core/chip
CPU(s) orderable: 2 to 4
Parallel: No
Primary Cache: 64KB(I)+64KB(D) on chip
Secondary Cache: 1.75MB on chip per CPU
L3 Cache: None
Other Cache: None
Memory: 8GB
Disk Subsystem: 36GB SCSI
Other Hardware: None

Software
Operating System: Tru64 UNIX V5.1B (Rev. 2650)+IPK
Compiler: Compaq C V6.5-011-48C5K
 Spike V5.2 (506A)
 Compaq Fortran V5.5-2602-48C8L
 Compaq Fortran 77 V5.5-2602-48C8L
 KAP Fortran V4.3 k3195171 000607
 KAP Fortran 77 V4.1 k310440 980926
 KAP C V4.1 k010726 000607
File System: ufs
System State: Multi-user

Notes/Tuning Information
Baseline C: cc -arch ev7 -fast -O4 ONESTEP
 Fortran: f90 -arch ev7 -fast -O5 ONESTEP

Peak:
 All use -arch ev7 -non_shared ONESTEP
except these (which use only the tunings shown below):
 173.applu 188.ammp 191.fma3d

Individual benchmark tuning:
168.wupwise: kf77 -call_shared -inline all -tune ev67
 -unroll 12 -automatic -align commons -arch ev67
 -fkapargs=' -aggressive=c -fuse
 -fuselvel=1 -so=2 -r=1 -o=1 -interleave
 -ur=6 -ur2=060 ' +PFB
171.swim: same as base
172.mgrid: kf90 -call_shared -arch generic -O5 -inline
Notes/Tuning Information (Continued)

manual -nopipeline -transform_loops -unroll 9 -automatic
-fkapargs='-aggressive=a -fuse -interleave
-ur=2 -ur3=5 -cachesize=128,16000 ' +PFB

173.applu: kf90 -O5 -transform_loops
-arkapargs='-o=0 -toupper -ur=14
-ur2=260 -ur3=18' +PFB

177.mesa: kcc -fast -O4 +CFB +IFB

178.galgel: f90 -O5 -fast -unroll 5 -automatic
kcc -assume whole_program -ldensemalloc
-call_shared -assume restricted_pointers
-unroll 16 -inline none -ckapargs=
-fuse -fuselevel=1 -ur=3' +PFB

183.equake: cc -call_shared -arch generic -fast -O4
-ldensemalloc -assume restricted_pointers
-inline speed -unroll 13 -xtaso_short +PFB

187.facerec: f90 -O4 -nopipeline -inline all
-non_shared -speculate all -unroll 7
-automatic -assume accuracy_sensitive
-math_library fast +IFB

188.ammp: cc -arch host -O4 -ifo -assume nomath_errno
-assume trusted_short_alignment -fp_reorder
-readonly_strings -ldensemalloc -xtaso_short
-assume restricted_pointers -unroll 9
-inline speed +CFB +IFB +PFB

189.lucas: kf90 -O5 -fkapargs='-ur=1' +PFB

191.fma3d: kf90 -arch ev6 -non_shared -O4 -transform_loops
-fkapargs='-cachesize=128,16000 ' +PFB

200.sixtrack: f90 -fast -O5 -assume accuracy_sensitive
-notransform_loops +PFB

301.apsi: kf90 -O5 -inline none -call_shared -speculate all
-align commons -ckapargs='-aggressive=ab
-tune=ev5 -fused -ur=1 -ur2=60 -ur3=20
-cachesize=128,16000'

Most benchmarks are built using one or more types of profile-driven feedback. The types used are designated by abbreviations in the notes:

+CFB: Code generation is optimized by the compiler, using feedback from a training run. These commands are done before the first compile (in phase "fdo_pre0"):

```
mkdir /tmp/pp
rm -f /tmp/pp/${baseexe}*
```

and these flags are added to the first and second compiles:

```
PASS1_CFLAGS = -prof_gen_noopt -prof_dir /tmp/pp
PASS2_CFLAGS = -prof_use -prof_dir /tmp/pp
```

(Peak builds use /tmp/pp above; base builds use /tmp/pb.)

+IFB: Icache usage is improved by the post-link-time optimizer Spike, using feedback from a training run. These commands are used (in phase "fdo_postN"):

```
Hewlett-Packard Company
AlphaServer ES47 7/1000

SPECfp_rate2000 = 29.6
SPECfp_rate_base2000 = 22.4

Notes/Tuning Information (Continued)

mv $(baseexe) oldexe
spike oldexe -feedback oldexe -o $(baseexe)

+PFB: Prefetches are improved by the post-link-time optimizer
Spike, using feedback from a training run. These
commands are used (in phase "fdo_post_makeN"):

rm -f *Counts*
mv $(baseexe) oldexe
pixie -stats dstride oldexe 1>pixie.out 2>pixie.err
mv oldexe.pixie $(baseexe)

A training run is carried out (in phase "fdo_runN"), and
then this command (in phase "fdo_postN"):

spike oldexe -fb oldexe -stride_prefetch -o $(baseexe)

When Spike is used for both Icache and Prefetch improvements,
only one spike command is actually issued, with the Icache
options followed by the Prefetch options.

vm:

vm_bigpg_enabled = 1
vm_bigpg_thres=16
vm_swap_eager = 0

proc:

max_per_proc_address_space = 0x400000000000
max_per_proc_data_size = 0x400000000000
max_per_proc_stack_size = 0x400000000000
max_proc_per_user = 2048
max_threads_per_user = 0
maxusers = 16384
per_proc_address_space = 0x400000000000
per_proc_data_size = 0x400000000000
per_proc_stack_size = 0x400000000000

Portability: galgel: -fixed

Information on UNIX V5.1B Patches can be found at