CFP2000 Result

Hewlett-Packard Company

hp AlphaServer DS25 68/1000

SPECfp_rate2000 = 21.5

SPECfp_rate_base2000 = 17.9

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Base Copies</th>
<th>Base Runtime</th>
<th>Base Ratio</th>
<th>Copies</th>
<th>Runtime</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>168.wupwise</td>
<td>2</td>
<td>239</td>
<td>15.5</td>
<td>2</td>
<td>197</td>
<td>18.8</td>
</tr>
<tr>
<td>171.swim</td>
<td>2</td>
<td>262</td>
<td>27.5</td>
<td>2</td>
<td>262</td>
<td>27.5</td>
</tr>
<tr>
<td>172.mgrid</td>
<td>2</td>
<td>354</td>
<td>11.8</td>
<td>2</td>
<td>236</td>
<td>17.7</td>
</tr>
<tr>
<td>173.applu</td>
<td>2</td>
<td>258</td>
<td>18.9</td>
<td>2</td>
<td>256</td>
<td>19.0</td>
</tr>
<tr>
<td>177.mesa</td>
<td>2</td>
<td>175</td>
<td>18.5</td>
<td>2</td>
<td>156</td>
<td>20.8</td>
</tr>
<tr>
<td>178.galgel</td>
<td>2</td>
<td>171</td>
<td>39.3</td>
<td>2</td>
<td>171</td>
<td>39.4</td>
</tr>
<tr>
<td>179.art</td>
<td>2</td>
<td>145</td>
<td>41.6</td>
<td>2</td>
<td>119</td>
<td>50.8</td>
</tr>
<tr>
<td>183.equake</td>
<td>2</td>
<td>393</td>
<td>7.67</td>
<td>2</td>
<td>156</td>
<td>19.4</td>
</tr>
<tr>
<td>187.facerec</td>
<td>2</td>
<td>177</td>
<td>24.9</td>
<td>2</td>
<td>171</td>
<td>25.7</td>
</tr>
<tr>
<td>188.ammp</td>
<td>2</td>
<td>371</td>
<td>13.8</td>
<td>2</td>
<td>314</td>
<td>16.2</td>
</tr>
<tr>
<td>189.lucas</td>
<td>2</td>
<td>235</td>
<td>19.8</td>
<td>2</td>
<td>197</td>
<td>23.6</td>
</tr>
<tr>
<td>191.fma3d</td>
<td>2</td>
<td>305</td>
<td>16.0</td>
<td>2</td>
<td>241</td>
<td>20.2</td>
</tr>
<tr>
<td>200.sixtrack</td>
<td>2</td>
<td>268</td>
<td>9.51</td>
<td>2</td>
<td>245</td>
<td>10.4</td>
</tr>
<tr>
<td>301.apsi</td>
<td>2</td>
<td>382</td>
<td>15.8</td>
<td>2</td>
<td>386</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Hardware

- **CPU:** Alpha 21264C
- **CPU MHz:** 1000
- **FPU:** Integrated
- **CPU(s) enabled:** 2 cores, 2 chips, 1 core/chip
- **CPU(s) orderable:** 2 cores, 2 chips, 1 core/chip
- **Parallel:** No
- **Primary Cache:** 64KB(I)+64KB(D) on chip
- **Secondary Cache:** 8MB off chip per CPU
- **L3 Cache:** None
- **Other Cache:** None
- **Memory:** 8GB
- **Disk Subsystem:** 18.2GB SCSI
- **Other Hardware:** None

Software

- **Operating System:** Tru64 UNIX V5.1A
- **Compiler:**
 - Compaq C V6.4-215-46B7O
 - Program Analysis Tools V2.0
 - Spike V5.2 DTK (1.471.2.46B5P)
 - Compaq Fortran V5.4A-1472-46B2F
 - Compaq Fortran 77 V5.4A-196-46B2F
 - KAP Fortran 4.3 000607
 - KAP Fortran 77 V4.1 980926
 - KAP C V4.1 000607
- **File System:** AdvFS
- **System State:** Multi-user

Notes/Tuning Information

Baseline C: cc -arch ev6 -fast -O4 ONESTEP

Fortran: f90 -arch ev6 -fast -O5 ONESTEP

Peak: All use -g3 -arch ev6 -non_shared ONESTEP

Individual benchmark tuning:
- 168.wupwise: kf77 -fast -O4 -pipeline -unroll 2 +PFB
- 171.swim: f90 -fast -O5
- 172.mgrid: kf77 -O5 -transform_loops -tune ev6 -unroll 8
- 173.applu: f90 -fast -O5 +PFB
- 177.mesa: cc -fast -O4 +CFB +IFB
- 178.galgel: f90 -fast -O5
- 179.art: kcc -fast -O4 -unroll 10 -ckapargs=':arl=4 -ur=4' +PFB
- 183.equake: cc -fast -xtaso_short -assume restricted_pointers -all -ldensemalloc -none +PFB

Standard Performance Evaluation Corporation
info@spec.org
http://www.spec.org
Notes/Tuning Information (Continued)

187. facerec: f90 -fast -O4 +PFB
188. ammp: cc -fast -O4 -xtaso_short -assume restricted_pointers
189. lucas: kf90 -O5 -fkapargs='-ur=1' +PFB
191. fma3d: kf90 -O4 -transform_loops +PFB
200. sixtrack: f90 -fast -O5 -assume accuracy_sensitive
 -notransform_loops +PFB
301. apsi: kf90 -O5 -transform_loops -unroll 8
 -fkapargs='-ur=1' +PFB

Most benchmarks are built using one or more types of profile-driven feedback. The types used are designated by abbreviations in the notes:

+CFB: Code generation is optimized by the compiler, using feedback from a training run. These commands are done before the first compile (in phase "fdo_pre0"):

 mkdir /tmp/pp
 rm -f /tmp/pp/${baseexe}*

and these flags are added to the first and second compiles:

 PASS1_CFLAGS = -prof_gen_noopt -prof_dir /tmp/pp
 PASS2_CFLAGS = -prof_use -prof_dir /tmp/pp

(Peak builds use /tmp/pp above; base builds use /tmp/pb.)

+IFB: Icache usage is improved by the post-link-time optimizer Spike, using feedback from a training run. These commands are used (in phase "fdo_postN"):

 mv ${baseexe} oldexe
 spike oldexe -feedback oldexe -o ${baseexe}

+PFB: Prefetches are improved by the post-link-time optimizer Spike, using feedback from a training run. These commands are used (in phase "fdo_post_makeN"):

 rm -f *Counts*
 mv ${baseexe} oldexe
 pixie -stats dstride oldexe 1>pixie.out 2>pixie.err
 mv oldexe.pixie ${baseexe}

A training run is carried out (in phase "fdo_runN"), and then this command (in phase "fdo_postN"):

 spike oldexe -fb oldexe -stride_prefetch -o ${baseexe}

When Spike is used for both Icache and Prefetch improvements, only one spike command is actually issued, with the Icache options followed by the Prefetch options.

Portability: galgel: -fixed
Notes/Tuning Information (Continued)

Spike, and the Program Analysis Tools, are part of the Developers' Tool Kit Supplement, http://www.tru64unix.compaq.com/dtk/ . The features used in this SPEC submission will be available at the web site as a production release in October, 2001. The C compiler for this SPEC submission has been available at the same location, as a production release, since August, 2001.