Compaq Computer Corporation
AlphaServer ES45 Model 68/1000

SPECfp_rate2000 = 11.1
SPECfp_rate_base2000 = 9.00

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Base Copies</th>
<th>Base Runtime</th>
<th>Base Ratio</th>
<th>Copies</th>
<th>Runtime</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>168.wupwise</td>
<td>1</td>
<td>243</td>
<td>7.65</td>
<td>1</td>
<td>195</td>
<td>9.54</td>
</tr>
<tr>
<td>171.swim</td>
<td>1</td>
<td>206</td>
<td>17.4</td>
<td>1</td>
<td>206</td>
<td>17.4</td>
</tr>
<tr>
<td>172.mgrid</td>
<td>1</td>
<td>348</td>
<td>5.99</td>
<td>1</td>
<td>225</td>
<td>9.26</td>
</tr>
<tr>
<td>173.applu</td>
<td>1</td>
<td>283</td>
<td>8.60</td>
<td>1</td>
<td>224</td>
<td>10.9</td>
</tr>
<tr>
<td>177.mesa</td>
<td>1</td>
<td>175</td>
<td>9.28</td>
<td>1</td>
<td>155</td>
<td>10.5</td>
</tr>
<tr>
<td>178.galgel</td>
<td>1</td>
<td>177</td>
<td>19.0</td>
<td>1</td>
<td>178</td>
<td>18.9</td>
</tr>
<tr>
<td>179.art</td>
<td>1</td>
<td>146</td>
<td>20.7</td>
<td>1</td>
<td>119</td>
<td>25.3</td>
</tr>
<tr>
<td>183.equake</td>
<td>1</td>
<td>392</td>
<td>3.85</td>
<td>1</td>
<td>144</td>
<td>10.4</td>
</tr>
<tr>
<td>187.facerec</td>
<td>1</td>
<td>186</td>
<td>11.9</td>
<td>1</td>
<td>170</td>
<td>12.9</td>
</tr>
<tr>
<td>188.ammp</td>
<td>1</td>
<td>372</td>
<td>6.87</td>
<td>1</td>
<td>313</td>
<td>8.14</td>
</tr>
<tr>
<td>189.lucas</td>
<td>1</td>
<td>225</td>
<td>10.3</td>
<td>1</td>
<td>204</td>
<td>11.4</td>
</tr>
<tr>
<td>191.fma3d</td>
<td>1</td>
<td>299</td>
<td>8.15</td>
<td>1</td>
<td>229</td>
<td>10.6</td>
</tr>
<tr>
<td>200.sixtrack</td>
<td>1</td>
<td>274</td>
<td>4.65</td>
<td>1</td>
<td>242</td>
<td>5.28</td>
</tr>
<tr>
<td>301.apsi</td>
<td>1</td>
<td>405</td>
<td>7.44</td>
<td>1</td>
<td>395</td>
<td>7.63</td>
</tr>
</tbody>
</table>

Hardware
- CPU: Alpha 21264C
- CPU MHz: 1000
- FPU: Integrated
- CPU(s) enabled: 1 core, 1 chip, 1 core/chip
- CPU(s) orderable: 1 to 4
- Primary Cache: 64KB(I)+64KB(D) on chip
- Secondary Cache: 8MB off chip per CPU
- L3 Cache: None
- Memory: 32GB
- Disk Subsystem: 2x10000 RPM: BD018635C4 BD0186349B
- Other Hardware: None

Software
- Operating System: Tru64 UNIX V5.1 +Patch Kit 2
- Compiler: Compaq C V6.4-214-46B59
- Program Analysis Tools V2.0
- Spike V5.2 DTK (1.461 46B5P)
- KAP Fortran V5.4A-196-46B2F
- KAP Fortran 77 V5.4A-196-46B2F
- KAP Fortran V4.3 000607
- KAP Fortran V4.1 980926
- KAP C V4.1 000607
- File System: AdvFs
- System State: Multi-user

Notes/Tuning Information
Baseline: C: cc -arch ev6 -fast -O4 ONESTEP
 Fortran: f90 -arch ev6 -fast -O5 ONESTEP
Peak:
 All use -g3 -arch ev6 -non_shared ONESTEP
 Individual benchmark tuning:
 168.wupwise: kf77 -fast -O4 -pipeline -unroll 2 +PFB
 171.swim: f90 -fast -O5
 172.mgrid: kf77 -O5 -transform_loops -tune ev6 -unroll 8
 173.applu: f90 -fast -O5 +PFB
 177.mesa: cc -fast -O4 +CFB +IFB
 178.galgel: f90 -fast -O5
 179.art: kcc -fast -O4 -unroll 10 -ckapargs=-'ar1=4
 -ur=4' +PFB
 183.equake: cc -fast -xtaso_short -assume
 restricted_pointers -all -ldensemalloc -none +PFB
Notes/Tuning Information (Continued)

187. facerec: f90 -fast -O4 +PFB
188. ammp: cc -fast -O4 -xtaso_short -assume
 restricted_pointers
189. lucas: kf90 -O5 -fkapargs='-ur=1' +PFB
191. fma3d: kf90 -O4 -transform_loops +PFB
200. sixtrack: f90 -fast -O5 -assume accuracy_sensitive
 -notransform_loops +PFB
301. apsi: kf90 -O5 -transform_loops -unroll 8
 -fkapargs='-ur=1' +PFB

Most benchmarks are built using one or more types of
profile-driven feedback. The types used are designated
by abbreviations in the notes:

+CFB: Code generation is optimized by the compiler, using
feedback from a training run. These commands are
done before the first compile (in phase "fdo_pre0"):

```bash
mkdir /tmp/pp
rm -f /tmp/pp/${baseexe}*
```

and these flags are added to the first and second compiles:

```bash
PASS1_CFLAGS = -prof_gen_noopt -prof_dir /tmp/pp
PASS2_CFLAGS = -prof_use -prof_dir /tmp/pp
```

(Peak builds use /tmp/pp above; base builds use /tmp/pb.)

+IFB: Icache usage is improved by the post-link-time optimizer
Spike, using feedback from a training run. These commands
are used (in phase "fdo_postN"):

```bash
mv ${baseexe} oldexe
spike oldexe -feedback oldexe -o ${baseexe}
```

+PFB: Prefetches are improved by the post-link-time optimizer
Spike, using feedback from a training run. These
commands are used (in phase "fdo_post_makeN"):

```bash
rm -f *Counts*
mv ${baseexe} oldexe
pixie -stats dstride oldexe 1>pixie.out 2>pixie.err
mv oldexe.pixie ${baseexe}
```

A training run is carried out (in phase "fdo_runN"), and
then this command (in phase "fdo_postN"):

```bash
spike oldexe -fb oldexe -stride_prefetch -o ${baseexe}
```

When Spike is used for both Icache and Prefetch improvements,
only one spike command is actually issued, with the Icache
options followed by the Prefetch options.

Portability: galgel: -fixed

Information on UNIX V5.1 Patches can be found at
Spike, and the Program Analysis Tools, are part of the Developers' Tool Kit Supplement, http://www.tru64unix.compaq.com/dtk/. The features used in this SPEC submission will be available at the web site as a beta kit in August, 2001, and as a production release in October, 2001. The C compiler for this SPEC submission has been available at the same location, as a production release, since May, 2001.